N-TiO2-x nanocatalysts are developed by the pulsed laser ablation in liquid (PLAL) technique, a simple and surfactant-free preparation method. The PLAL approach allows synthesizing chemical-morphological fine-tuning water TiO2-based nanomaterials, starting from targets of different nature (powders and commercial high purity targets). The catalytic activity was investigated using methylene blue (cationic dye) and methyl orange (azo dye). A different photocatalytic response was found for the various kinds of N-TiO2-x. In the first 20 min, under UV and visible light, about 50% and 10% of the methyl orange were removed using the N-TiO2-x and TiO2 colloids, respectively. In addition, we observe that the response towards the methylene blue is comparable in all the synthesized samples under UV irradiation while differing by about 30% under a visible lamp. The enhanced photocatalytic response of the N-TiO2-x nanocatalysts with respect to the TiO2 one is dependent on the content of the nitrogen dopant, surface area, and nitrogen-oxygen bonding configurations.

N-TiO2- x Nanocatalysts: PLAL Synthesis and Photocatalytic Activity

D'Urso L.;Gallo G.;Compagnini G.
2020-01-01

Abstract

N-TiO2-x nanocatalysts are developed by the pulsed laser ablation in liquid (PLAL) technique, a simple and surfactant-free preparation method. The PLAL approach allows synthesizing chemical-morphological fine-tuning water TiO2-based nanomaterials, starting from targets of different nature (powders and commercial high purity targets). The catalytic activity was investigated using methylene blue (cationic dye) and methyl orange (azo dye). A different photocatalytic response was found for the various kinds of N-TiO2-x. In the first 20 min, under UV and visible light, about 50% and 10% of the methyl orange were removed using the N-TiO2-x and TiO2 colloids, respectively. In addition, we observe that the response towards the methylene blue is comparable in all the synthesized samples under UV irradiation while differing by about 30% under a visible lamp. The enhanced photocatalytic response of the N-TiO2-x nanocatalysts with respect to the TiO2 one is dependent on the content of the nitrogen dopant, surface area, and nitrogen-oxygen bonding configurations.
File in questo prodotto:
File Dimensione Formato  
2901516.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.44 MB
Formato Adobe PDF
1.44 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/467233
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact