Rock fragments from the deepest parts of a buried hydrothermal system belonging to the Mesozoic Tethys Ocean entered as xenoliths in a Miocenic diatreme, hence brought to the surface, in the Hyblean Plateau (Sicily). Some xenoliths consist of strongly serpentinized ultramafic rocks bearing blebs of abiotic organic matter, where clusters of amorphous carbon nanoparticles, including nanodiamonds, are immersed. Such an occurrence conjures up established hypotheses that diamond surfaces are suitable catalytic platforms stimulating the assemblage of complex bio-organic molecules relevant to the emergence of life on Earth. The appearance of bio-organic mol- ecules under primitive Earth conditions is one of the major unsolved questions on the origin of life. Here we report new micro-Raman spectra on blebs of abiotic organic matter from a selected xenolith. Diamond bands were related to hydrogenated nanocrystalline diamonds, with size of nearly 1–1.6 nm, formed from organics at low pressures and temperatures. In particular, diamond surfaces can give rise to crystalline interfacial water layers that may have played a fundamental role in the early biosphere evolution as a good medium for rapidly trans- porting positive charges in the form of hydrated protons. Nowadays, proton gradients in alkaline hydrothermal vents along oceanic ridges are generally viewed as key pre-biotic factors. In general, serpentinites span the entire geological record, including prebiotic times. These hydrous ultramafic rocks often display evidence of abiotic carbon species, both organic and inorganic, including nanodiamonds, being also capable to give rise to chemi- osmotic processes and proton gradients necessary to the organisms, such as the “Last Universal Common Ancestor” (LUCA), in the prebiotic Earth.

Sicilian serpentinite xenoliths containing abiotic organics with nanodiamond clusters as key model for prebiotic processes

Scribano, Vittorio
Secondo
;
Barone, Germana
Ultimo
2021-01-01

Abstract

Rock fragments from the deepest parts of a buried hydrothermal system belonging to the Mesozoic Tethys Ocean entered as xenoliths in a Miocenic diatreme, hence brought to the surface, in the Hyblean Plateau (Sicily). Some xenoliths consist of strongly serpentinized ultramafic rocks bearing blebs of abiotic organic matter, where clusters of amorphous carbon nanoparticles, including nanodiamonds, are immersed. Such an occurrence conjures up established hypotheses that diamond surfaces are suitable catalytic platforms stimulating the assemblage of complex bio-organic molecules relevant to the emergence of life on Earth. The appearance of bio-organic mol- ecules under primitive Earth conditions is one of the major unsolved questions on the origin of life. Here we report new micro-Raman spectra on blebs of abiotic organic matter from a selected xenolith. Diamond bands were related to hydrogenated nanocrystalline diamonds, with size of nearly 1–1.6 nm, formed from organics at low pressures and temperatures. In particular, diamond surfaces can give rise to crystalline interfacial water layers that may have played a fundamental role in the early biosphere evolution as a good medium for rapidly trans- porting positive charges in the form of hydrated protons. Nowadays, proton gradients in alkaline hydrothermal vents along oceanic ridges are generally viewed as key pre-biotic factors. In general, serpentinites span the entire geological record, including prebiotic times. These hydrous ultramafic rocks often display evidence of abiotic carbon species, both organic and inorganic, including nanodiamonds, being also capable to give rise to chemi- osmotic processes and proton gradients necessary to the organisms, such as the “Last Universal Common Ancestor” (LUCA), in the prebiotic Earth.
2021
Hydrothermal systems, Nanocarbons, Sulfides, FT-t synthesis, Abiogenesis,LUCA, Sicily, Micro-Raman
File in questo prodotto:
File Dimensione Formato  
DiamondLife.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Dimensione 3.52 MB
Formato Adobe PDF
3.52 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/477846
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact