In this paper, we establish two results assuring that $\lambda=0$ is a bifurcation point in $L^\infty(\Omega)$ for the Hammerstein integral equation \begin{center} $u(x)=\lambda\int_\Omega k(x,y)f(y,u(y))dy.$ \end{center} We also present an application to the two-point boundary value problem \[ \left\{ \begin{array}{ll} -u''=\lambda f(x,u) & \mbox{a.e. in $[0,1]$ } \\ u(0)=u(1)=0 \end{array} \right. \]

Bifurcation theorems for Hammerstein nonlinear integral equations

FARACI, FRANCESCA
2002

Abstract

In this paper, we establish two results assuring that $\lambda=0$ is a bifurcation point in $L^\infty(\Omega)$ for the Hammerstein integral equation \begin{center} $u(x)=\lambda\int_\Omega k(x,y)f(y,u(y))dy.$ \end{center} We also present an application to the two-point boundary value problem \[ \left\{ \begin{array}{ll} -u''=\lambda f(x,u) & \mbox{a.e. in $[0,1]$ } \\ u(0)=u(1)=0 \end{array} \right. \]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/4780
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact