We investigate a hybrid system of a superconducting charge qubit interacting directly with a single neutral atom via electric dipole coupling. Interfacing of the macroscopic superconducting circuit with the microscopic atomic system is accomplished by varying the gate capacitance of the charge qubit. To achieve a strong interaction, we employ two Rydberg states with an electric-dipole-allowed transition, which alters the polarizability of the dielectric medium of the gate capacitor. Sweeping the gate voltage with different rates leads to a precise control of hybrid quantum states. Furthermore, we show a possible implementation of a universal two-qubit gate
Charge Qubit-Atom Hybrid
AMICO, Luigi;
2016-01-01
Abstract
We investigate a hybrid system of a superconducting charge qubit interacting directly with a single neutral atom via electric dipole coupling. Interfacing of the macroscopic superconducting circuit with the microscopic atomic system is accomplished by varying the gate capacitance of the charge qubit. To achieve a strong interaction, we employ two Rydberg states with an electric-dipole-allowed transition, which alters the polarizability of the dielectric medium of the gate capacitor. Sweeping the gate voltage with different rates leads to a precise control of hybrid quantum states. Furthermore, we show a possible implementation of a universal two-qubit gateFile | Dimensione | Formato | |
---|---|---|---|
PhysRevA.93.042329-1.pdf
solo gestori archivio
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
1.03 MB
Formato
Adobe PDF
|
1.03 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.