Exotic ambrosia beetles are increasing in Europe due to global trade and global warming. Among these xylomycetophagous insects, Xylosandrus compactus (Eichhoff) (Coleoptera: Curculionidae) is a serious threat for several Mediterranean host plants. Carob trees growing in Sicily (Italy) have been extensively attacked by beetles leading to rapid tree decline. Although X. compactus has been found in Europe for several years, most aspects of its ecology are still unknown. We thus studied the population structure and dynamics of X. compactus, together with its twig size preference during a sampling of infested carob trees in south east Sicily. In addition, fungi associated with insects or galleries were isolated and characterized. The results showed that, in this newly-colonized environment and host plant, adult X. compactus overwinters inside twigs and starts to fly and reproduce in mid spring, completing five generations before overwintering in late fall. The mean diameter of carob twigs infested by the beetle varied significantly over the seasons, with the insect tending to infest larger twigs as season progresses. The mean number of adults/gallery was 19.21, ranging from 6 to 28. The minimum temperature significantly affected the overwintering adult mortality. Ambrosiella xylebori and Fusarium solani were the main symbionts associated with the pest in this study. Acremonium sp. was instead recorded for the first time in Europe inside X. compactus galleries. Several other fungi species were also found for the first time in association with X. compactus. Our findings provide useful insights into the sustainable management of this noxious pest.

Seasonal changes in population structure of the ambrosia beetle Xylosandrus compactus and its associated fungi in a southern Mediterranean environment

Gugliuzzo A
Primo
;
Biondi A;Aiello D;Vitale A;Polizzi G
Penultimo
;
Tropea Garzia Giovanna
Ultimo
2020-01-01

Abstract

Exotic ambrosia beetles are increasing in Europe due to global trade and global warming. Among these xylomycetophagous insects, Xylosandrus compactus (Eichhoff) (Coleoptera: Curculionidae) is a serious threat for several Mediterranean host plants. Carob trees growing in Sicily (Italy) have been extensively attacked by beetles leading to rapid tree decline. Although X. compactus has been found in Europe for several years, most aspects of its ecology are still unknown. We thus studied the population structure and dynamics of X. compactus, together with its twig size preference during a sampling of infested carob trees in south east Sicily. In addition, fungi associated with insects or galleries were isolated and characterized. The results showed that, in this newly-colonized environment and host plant, adult X. compactus overwinters inside twigs and starts to fly and reproduce in mid spring, completing five generations before overwintering in late fall. The mean diameter of carob twigs infested by the beetle varied significantly over the seasons, with the insect tending to infest larger twigs as season progresses. The mean number of adults/gallery was 19.21, ranging from 6 to 28. The minimum temperature significantly affected the overwintering adult mortality. Ambrosiella xylebori and Fusarium solani were the main symbionts associated with the pest in this study. Acremonium sp. was instead recorded for the first time in Europe inside X. compactus galleries. Several other fungi species were also found for the first time in association with X. compactus. Our findings provide useful insights into the sustainable management of this noxious pest.
2020
Animals; Ascomycota; Ecosystem; Fabaceae; Fusarium; Host-Parasite Interactions; Plant Diseases; Population Dynamics; Seasons; Sicily; Symbiosis; Trees; Weevils
File in questo prodotto:
File Dimensione Formato  
journal.pone.0239011.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.1 MB
Formato Adobe PDF
1.1 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/481925
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 17
social impact