The growth of multiwalled carbon nanotubes and carbon nanofibers by catalytic chemical vapor deposition at lower temperatures is found to be aided by a separate catalyst pretreatment step in which the catalyst thin film is restructured into a series of nanoparticles with a more active surface. The restructuring is particularly effective when carried out by an ammonia plasma. The nature of the restructuring is studied by atomic force microscopy, transmission electron microscopy, x-ray photoelectron spectroscopy, and Raman. We find that as the growth temperature decreases, there is a limiting maximum catalyst thickness, which gives any nanotube growth. Plasmas are found to restructure the catalyst by a combination of physical etching and chemical modification. Large plasma powers can lead to complete etching of thin catalyst films, and hence loss of activity. Ni is found to be the better catalyst at low temperatures because it easily reduced from any oxide form to the catalytically active metallic state. On the other hand, Fe gives the largest nanotube length and density yield at moderate temperatures because it is less easy to reduce at low temperatures and it is more easily poisoned at high temperatures. © 2009 American Institute of Physics.
Plasma restructuring of catalysts for chemical vapor deposition of carbon nanotubes
Scardaci V.;
2009-01-01
Abstract
The growth of multiwalled carbon nanotubes and carbon nanofibers by catalytic chemical vapor deposition at lower temperatures is found to be aided by a separate catalyst pretreatment step in which the catalyst thin film is restructured into a series of nanoparticles with a more active surface. The restructuring is particularly effective when carried out by an ammonia plasma. The nature of the restructuring is studied by atomic force microscopy, transmission electron microscopy, x-ray photoelectron spectroscopy, and Raman. We find that as the growth temperature decreases, there is a limiting maximum catalyst thickness, which gives any nanotube growth. Plasmas are found to restructure the catalyst by a combination of physical etching and chemical modification. Large plasma powers can lead to complete etching of thin catalyst films, and hence loss of activity. Ni is found to be the better catalyst at low temperatures because it easily reduced from any oxide form to the catalytically active metallic state. On the other hand, Fe gives the largest nanotube length and density yield at moderate temperatures because it is less easy to reduce at low temperatures and it is more easily poisoned at high temperatures. © 2009 American Institute of Physics.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.