In this contribution, we approached a new aspect in robotic applications. We investigated human-machine modeling for remote ultrasound scan equipment. While robotic systems for ultrasound scan applications with remote operations have been widely studied, in this research, remote force-feedback control was tested. The goal is for the human operator to receive, as physical input, the correct force perception transmitted by the remote ultrasound scan equipment in analyzing the body of the patient. Two principal aspects were investigated. The first was an artificial body model to receive the control signals from the remote equipment. The second aspect was to study a suitable feedback control law that attempts to compensate for the uncertainty between the artificial body and the patient's body, while also taking into account the transmission delay. Therefore, the task was to give the operator relevant information while considering the force effect; thus, providing a reliable and efficient platform in order to work in remote conditions with ultrasound scan equipment.

Force feedback assistance in remote ultrasound scan procedures

Bucolo M.;Buscarino A.;Fortuna L.;Gagliano S.
2020-01-01

Abstract

In this contribution, we approached a new aspect in robotic applications. We investigated human-machine modeling for remote ultrasound scan equipment. While robotic systems for ultrasound scan applications with remote operations have been widely studied, in this research, remote force-feedback control was tested. The goal is for the human operator to receive, as physical input, the correct force perception transmitted by the remote ultrasound scan equipment in analyzing the body of the patient. Two principal aspects were investigated. The first was an artificial body model to receive the control signals from the remote equipment. The second aspect was to study a suitable feedback control law that attempts to compensate for the uncertainty between the artificial body and the patient's body, while also taking into account the transmission delay. Therefore, the task was to give the operator relevant information while considering the force effect; thus, providing a reliable and efficient platform in order to work in remote conditions with ultrasound scan equipment.
2020
Biomedical robots
Human-machine interaction
Remote operations
Ultrasound scan
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/482538
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 13
social impact