Hydrogels produced by self-assembling peptides are intrinsically biocompatible and thus appropriate for many biomedical purposes. Their application field may be even made wider by reducing the softness and improving the hydrogel mechanical properties through cross-linking treatments. To this aim, modifications of EAK16-II sequence by including Cys residues in its sequence were here investigated in order to obtain hydrogels cross-linkable through a disulfide bridge. Two sequences, namely, C-EAK and C-EAK-C, that contain Cys residues at the N-terminus or at both ends were characterized. Fiber-forming abilities and biological and dynamic mechanical properties were explored before and after the oxidative treatment. In particular, the oxidized version of C-EAK presents a good cell viability and sustains osteoblast proliferation. Furthermore, molecular dynamics (MD) simulations on monomeric and assembled forms of the peptides were performed. MD simulations explained how a specific Cys functionalization was better than the other one. In particular, the results suggested that EAK16-II functionalization with a single Cys residue, instead of two, together with biocompatible cross-linking may be considered an intriguing strategy to obtain a support with better dynamic mechanical properties and biological performances.

EAK Hydrogels Cross-Linked by Disulfide Bonds: Cys Number and Position Are Matched to Performances

Messina G. M. L.;Marletta G.;
2020-01-01

Abstract

Hydrogels produced by self-assembling peptides are intrinsically biocompatible and thus appropriate for many biomedical purposes. Their application field may be even made wider by reducing the softness and improving the hydrogel mechanical properties through cross-linking treatments. To this aim, modifications of EAK16-II sequence by including Cys residues in its sequence were here investigated in order to obtain hydrogels cross-linkable through a disulfide bridge. Two sequences, namely, C-EAK and C-EAK-C, that contain Cys residues at the N-terminus or at both ends were characterized. Fiber-forming abilities and biological and dynamic mechanical properties were explored before and after the oxidative treatment. In particular, the oxidized version of C-EAK presents a good cell viability and sustains osteoblast proliferation. Furthermore, molecular dynamics (MD) simulations on monomeric and assembled forms of the peptides were performed. MD simulations explained how a specific Cys functionalization was better than the other one. In particular, the results suggested that EAK16-II functionalization with a single Cys residue, instead of two, together with biocompatible cross-linking may be considered an intriguing strategy to obtain a support with better dynamic mechanical properties and biological performances.
2020
atomic force microscopy
biomaterials
cross-linking
dynamic mechanical analysis
h-osteoblast
molecular dynamics
self-assembling peptides
File in questo prodotto:
File Dimensione Formato  
acsbiomaterials.9b01556.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 5.06 MB
Formato Adobe PDF
5.06 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/487748
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact