Fully Depleted Silicon on Insulator (FD-SOI) CMOS technology offers the possibility of circuit performance optimization with reduction of both topology complexity and power consumption. These advantages are fully exploited in this paper in order to develop a new topology of active continuous-time second-order bandpass filter with maximum resonant frequency in the range of 1 GHz and wide electrically tunable quality factor requiring a very limited quiescent current consumption below 10 µA. Preliminary simulations that were carried out using the 28-nm FD-SOI technology from STMicroelectronics show that the designed example can operate up to 1.3 GHz of resonant frequency with tunable Q ranging from 90 to 370, while only requiring 6 µA standby current under 1-V supply.
High-frequency low-current second-order bandpass active filter topology and its design in 28-nm FD-SOI CMOS
Ballo A.;Grasso A. D.
;Pennisi S.
Primo
;
2020-01-01
Abstract
Fully Depleted Silicon on Insulator (FD-SOI) CMOS technology offers the possibility of circuit performance optimization with reduction of both topology complexity and power consumption. These advantages are fully exploited in this paper in order to develop a new topology of active continuous-time second-order bandpass filter with maximum resonant frequency in the range of 1 GHz and wide electrically tunable quality factor requiring a very limited quiescent current consumption below 10 µA. Preliminary simulations that were carried out using the 28-nm FD-SOI technology from STMicroelectronics show that the designed example can operate up to 1.3 GHz of resonant frequency with tunable Q ranging from 90 to 370, while only requiring 6 µA standby current under 1-V supply.File | Dimensione | Formato | |
---|---|---|---|
r50 filtro.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Dimensione
3.97 MB
Formato
Adobe PDF
|
3.97 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.