Protein-inspired biomaterials have gained great interest as an alternative to synthetic polymers, in particular, for their potential use as biomedical devices. The potential inspiring models are mainly proteins able to confer mechanical properties to tissues and organs, such as elasticity (elastin, resilin, spider silk) and strength (collagen, silk). The proper combination of repetitive sequences, each of them derived from different proteins, represents a useful tool for obtaining biomaterials with tailored mechanical properties and biological functions. In this report we describe the design, the production, and the preliminary characterization of a chimeric polypeptide, based on sequences derived from the highly resilient proteins resilin and elastin and from collagen-like sequences. The results show that the obtained chimeric recombinant material exhibits promising self-assembling properties. Young's modulus of the fibers was determined by AFM image analysis and lies in the range of 0.1-3 MPa in agreement with the expectations for elastin-like and resilin-like materials.

Design and Production of a Chimeric Resilin-, Elastin-, and Collagen-Like Engineered Polypeptide

MARLETTA, Giovanni;
2011-01-01

Abstract

Protein-inspired biomaterials have gained great interest as an alternative to synthetic polymers, in particular, for their potential use as biomedical devices. The potential inspiring models are mainly proteins able to confer mechanical properties to tissues and organs, such as elasticity (elastin, resilin, spider silk) and strength (collagen, silk). The proper combination of repetitive sequences, each of them derived from different proteins, represents a useful tool for obtaining biomaterials with tailored mechanical properties and biological functions. In this report we describe the design, the production, and the preliminary characterization of a chimeric polypeptide, based on sequences derived from the highly resilient proteins resilin and elastin and from collagen-like sequences. The results show that the obtained chimeric recombinant material exhibits promising self-assembling properties. Young's modulus of the fibers was determined by AFM image analysis and lies in the range of 0.1-3 MPa in agreement with the expectations for elastin-like and resilin-like materials.
2011
Polypeptides; AFM; Elastin
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/48793
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 93
  • ???jsp.display-item.citation.isi??? 81
social impact