The non-thermal radio emission of main-sequence early-type stars is a signature of stellar magnetism. We present multiwavelength (1.6-16.7 GHz) ATCA measurements of the early-type magnetic star rho OphC, which is a flat-spectrum non-thermal radio source. The rho OphC radio emission is partially circularly polarized with a steep spectral dependence: the fraction of polarized emission is about 60 per cent at the lowest frequency sub-band (1.6 GHz) while is undetected at 16.7 GHz. This is clear evidence of coherent Auroral Radio Emission (ARE) from the rho OphC magnetosphere. Interestingly, the detection of the rho OphC's ARE is not related to a peculiar rotational phase. This is a consequence of the stellar geometry, which makes the strongly anisotropic radiation beam of the amplified radiation always pointed towards Earth. The circular polarization sign evidences mainly amplification of the ordinary mode of the electromagnetic wave, consistent with a maser amplification occurring within dense regions. This is indirect evidence of the plasma evaporation from the polar caps, a phenomenon responsible for the thermal X-ray aurorae. rho OphC is not the first early-type magnetic star showing the O-mode dominated ARE but is the first star with the ARE always on view.

The auroral radio emission of the magnetic B-type star rho OphC

Leone, F;Giarrusso, M;
2020-01-01

Abstract

The non-thermal radio emission of main-sequence early-type stars is a signature of stellar magnetism. We present multiwavelength (1.6-16.7 GHz) ATCA measurements of the early-type magnetic star rho OphC, which is a flat-spectrum non-thermal radio source. The rho OphC radio emission is partially circularly polarized with a steep spectral dependence: the fraction of polarized emission is about 60 per cent at the lowest frequency sub-band (1.6 GHz) while is undetected at 16.7 GHz. This is clear evidence of coherent Auroral Radio Emission (ARE) from the rho OphC magnetosphere. Interestingly, the detection of the rho OphC's ARE is not related to a peculiar rotational phase. This is a consequence of the stellar geometry, which makes the strongly anisotropic radiation beam of the amplified radiation always pointed towards Earth. The circular polarization sign evidences mainly amplification of the ordinary mode of the electromagnetic wave, consistent with a maser amplification occurring within dense regions. This is indirect evidence of the plasma evaporation from the polar caps, a phenomenon responsible for the thermal X-ray aurorae. rho OphC is not the first early-type magnetic star showing the O-mode dominated ARE but is the first star with the ARE always on view.
2020
masers
stars: early-type
stars: individual: rho OphC
stars: magnetic field
radio continuum: stars
X-rays: stars
File in questo prodotto:
File Dimensione Formato  
slaa157.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Dimensione 677.2 kB
Formato Adobe PDF
677.2 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/487953
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 12
social impact