In this note we first review the concept of a Wardrop equilibrium in the finite dimensional scalar and vector cases, and its relationship with scalar and vector variational inequalities. We then extend the concept of a vector equilibrium to the Lebesgue space of square integrable functions, with respect to a given probability measure, so as to model a vector network equilibrium problem with random data.

A formulation of Wardrop vector equilibrium principle in probabilistic Lebesgue spaces

Fabio Raciti
2020-01-01

Abstract

In this note we first review the concept of a Wardrop equilibrium in the finite dimensional scalar and vector cases, and its relationship with scalar and vector variational inequalities. We then extend the concept of a vector equilibrium to the Lebesgue space of square integrable functions, with respect to a given probability measure, so as to model a vector network equilibrium problem with random data.
2020
Vector equilibrium; vector variational inequality; random variational inequality
File in questo prodotto:
File Dimensione Formato  
jncav21n5p1247.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 659.1 kB
Formato Adobe PDF
659.1 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/498194
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact