The dynamics of a high-performance motorcycle are greatly influenced by the rider’s weight and movements especially when the power-to-weight ratio is very high. Generally in motor vehicles, the driver’s/rider’s weight is a significant fraction of the entire system. This work is about ADAMS/View multibody modelling of a motorcycle and virtual rider who simulates handlebar interaction and saddle sliding. In the literature, the rider’s influence is unrealistic being limited to considering him as a concentrated mass or in other cases as a fixed passive system. Even vehicle modelling is often inaccurate, referring at best to simplified models of rigid bodies. In this work, the vehicle and rider have been accurately modelled to most realistically reproduce the dynamic behaviour of the system. The motorcycle was modelled with 12 bodies incorporating concentrated flexibility for the two suspension units and considering the chassis as a flexible body using modal synthesis. The virtual rider is made up of 15 rigid bodies and has 28 degrees of freedom. To study the effects on the motorcycle of the rider’s movements as well as the motorcycle’s dynamics and performance, a monitoring system similar to that in the literature was used to read handlebar torque and engine and braking torque. Furthermore, in the literature there are simulations of standard manoeuvres whereas in this work an entire lap of Monza was simulated. There were simulations of a fixed and mobile rider validating the model in advance and thereafter monitoring the most significant dynamic parameters. The multibody model provides useful results at the design phase and insights into the whole vehicle/rider dynamic to setup all the reference parameters for immediately evaluating system effects.

An advanced multibody model for evaluating rider’s influence on motorcycle dynamics

SEQUENZIA G;OLIVERI, Salvatore;CALI', MICHELE;FATUZZO G.
2015-01-01

Abstract

The dynamics of a high-performance motorcycle are greatly influenced by the rider’s weight and movements especially when the power-to-weight ratio is very high. Generally in motor vehicles, the driver’s/rider’s weight is a significant fraction of the entire system. This work is about ADAMS/View multibody modelling of a motorcycle and virtual rider who simulates handlebar interaction and saddle sliding. In the literature, the rider’s influence is unrealistic being limited to considering him as a concentrated mass or in other cases as a fixed passive system. Even vehicle modelling is often inaccurate, referring at best to simplified models of rigid bodies. In this work, the vehicle and rider have been accurately modelled to most realistically reproduce the dynamic behaviour of the system. The motorcycle was modelled with 12 bodies incorporating concentrated flexibility for the two suspension units and considering the chassis as a flexible body using modal synthesis. The virtual rider is made up of 15 rigid bodies and has 28 degrees of freedom. To study the effects on the motorcycle of the rider’s movements as well as the motorcycle’s dynamics and performance, a monitoring system similar to that in the literature was used to read handlebar torque and engine and braking torque. Furthermore, in the literature there are simulations of standard manoeuvres whereas in this work an entire lap of Monza was simulated. There were simulations of a fixed and mobile rider validating the model in advance and thereafter monitoring the most significant dynamic parameters. The multibody model provides useful results at the design phase and insights into the whole vehicle/rider dynamic to setup all the reference parameters for immediately evaluating system effects.
2015
Path tracking; Rider–motorcycle system; Rider’s effects
File in questo prodotto:
File Dimensione Formato  
An advanced multibody model for evaluating rider's influence on motorcycle dynamics.PDF

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Dimensione 1.77 MB
Formato Adobe PDF
1.77 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/49865
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 17
social impact