In this study, the adaptation characteristics of orange trees, related to the application over a decade of deficit irrigation (DI) strategies, have been explored. To this purpose, the analysis of a minimal dataset composed of physiological information (stem water potential - Ψstem and sap flow - SF measurements), yield (fruits number and weight) and qualitative parameters (titratable acidity, TA; and total soluble solids, TSS) was performed with reference to the last irrigation seasons (i.e. 2018–19). The applied irrigation treatments were the following: sustained deficit irrigation (SDI); regulated deficit irrigation (RDI); partial root-zone drying (PRD), each distributing a water deficit of about 19%, 29% and 52%, respectively, compared to the control treatment (FI) supplying the full irrigation level (100% ETc). In general, higher water use efficiencies (WUE) have been obtained in DI treatments, which guarantee greater water savings (up to 50%), without affecting yield and quality characteristics. In particular, the most stressed treatment (PRD), while reaching the lowest Ψstem values (− 1.8 to − 2.0 MPa), as also shown by SF versus Ψstem clusters, resulted in WUE values for yield (WUEY), TA (WUETA) and TSS (WUETSS) parameters of approximately 2.6, 2.9, and 3.1 times greater than FI, respectively. Overall, this study allowed identifying the cumulative adaptation characteristics of the orange trees under study to the application of long-term DI strategies and showing that trees were able to achieve yields and qualitative features similar to those obtained with FI, even after 10 years of application of deficient irrigation regimes.

Adaptation of citrus orchards to deficit irrigation strategies

Saitta D.
Primo
;
Consoli S.
Secondo
;
Longo Minnolo G.
;
Vanella D.
Ultimo
2021-01-01

Abstract

In this study, the adaptation characteristics of orange trees, related to the application over a decade of deficit irrigation (DI) strategies, have been explored. To this purpose, the analysis of a minimal dataset composed of physiological information (stem water potential - Ψstem and sap flow - SF measurements), yield (fruits number and weight) and qualitative parameters (titratable acidity, TA; and total soluble solids, TSS) was performed with reference to the last irrigation seasons (i.e. 2018–19). The applied irrigation treatments were the following: sustained deficit irrigation (SDI); regulated deficit irrigation (RDI); partial root-zone drying (PRD), each distributing a water deficit of about 19%, 29% and 52%, respectively, compared to the control treatment (FI) supplying the full irrigation level (100% ETc). In general, higher water use efficiencies (WUE) have been obtained in DI treatments, which guarantee greater water savings (up to 50%), without affecting yield and quality characteristics. In particular, the most stressed treatment (PRD), while reaching the lowest Ψstem values (− 1.8 to − 2.0 MPa), as also shown by SF versus Ψstem clusters, resulted in WUE values for yield (WUEY), TA (WUETA) and TSS (WUETSS) parameters of approximately 2.6, 2.9, and 3.1 times greater than FI, respectively. Overall, this study allowed identifying the cumulative adaptation characteristics of the orange trees under study to the application of long-term DI strategies and showing that trees were able to achieve yields and qualitative features similar to those obtained with FI, even after 10 years of application of deficient irrigation regimes.
Orange groves
Semi-arid climate
Sustainable citrus production
Water deficit
File in questo prodotto:
File Dimensione Formato  
Manuscript.pdf

non disponibili

Descrizione: Articolo
Tipologia: Documento in Pre-print
Dimensione 2.02 MB
Formato Adobe PDF
2.02 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/498980
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? ND
social impact