In this study, it was aimed to investigate the combinatory effect of biophysical and biochemical factors on human dental pulp stem cells' (hDPSCs) behavior. For this purpose, well-defined nanotopography of nanowells with two different pitch size of 109. nm and 341. nm were prepared on polyhydroxymethylsiloxane (PHMS) by using colloidal particles nanofabrication. The nanopatterned PHMS surfaces (PHMS/109 and PHMS/341) were subsequently used for fibronectin (Fn) adsorption. With this approach, nanotopographical details were combined with biochemical signals from Fn. Depending upon the size of cavities created by the nanowells, Fn molecules followed a site-selective adsorption. While they adsorbed both inside and outside the nanowells of PHMS/341, they preferred to adsorb outside the cavities of PHMS/109 surfaces. Human dental pulp stem cells were cultured on nanopatterned PHMS with or without Fn adsorption in the presence and absence of serum. Scanning electron microscopy and fluorescence microscopy analyses showed the interaction of cells was dependent on nanotopography size especially in serum-free medium. Furthermore, hDPSCs' morphology and cytoskeletal organization changed in correlation with preferential Fn adsorption. On Fn adsorbed PHMS/109 surfaces, cells displayed stretched bundles whereas, they showed extensive spreading and followed the Fn adsorbed sites inside the cavities of PHMS/341 surfaces. The observed effects are interpreted in terms of the preferential exposure of different Fn epitopes occurring on PHMS/109 and PHMS/341 as a consequence of the different hydrophilic/hydrophobic adsorbing surface.

Impact of selective fibronectin nanoconfinement on human dental pulp stem cells

Messina G. M. L.;Marletta G.
2014-01-01

Abstract

In this study, it was aimed to investigate the combinatory effect of biophysical and biochemical factors on human dental pulp stem cells' (hDPSCs) behavior. For this purpose, well-defined nanotopography of nanowells with two different pitch size of 109. nm and 341. nm were prepared on polyhydroxymethylsiloxane (PHMS) by using colloidal particles nanofabrication. The nanopatterned PHMS surfaces (PHMS/109 and PHMS/341) were subsequently used for fibronectin (Fn) adsorption. With this approach, nanotopographical details were combined with biochemical signals from Fn. Depending upon the size of cavities created by the nanowells, Fn molecules followed a site-selective adsorption. While they adsorbed both inside and outside the nanowells of PHMS/341, they preferred to adsorb outside the cavities of PHMS/109 surfaces. Human dental pulp stem cells were cultured on nanopatterned PHMS with or without Fn adsorption in the presence and absence of serum. Scanning electron microscopy and fluorescence microscopy analyses showed the interaction of cells was dependent on nanotopography size especially in serum-free medium. Furthermore, hDPSCs' morphology and cytoskeletal organization changed in correlation with preferential Fn adsorption. On Fn adsorbed PHMS/109 surfaces, cells displayed stretched bundles whereas, they showed extensive spreading and followed the Fn adsorbed sites inside the cavities of PHMS/341 surfaces. The observed effects are interpreted in terms of the preferential exposure of different Fn epitopes occurring on PHMS/109 and PHMS/341 as a consequence of the different hydrophilic/hydrophobic adsorbing surface.
2014
AFM
Cell-substrate interaction
Fibronectin adsorption
Human dental pulp stem cells
Surface nanostructure
Cell Adhesion
Cell Line
Dental Pulp
Fibronectins
Humans
Nanostructures
Stem Cells
Surface Properties
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/500456
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 17
  • ???jsp.display-item.citation.isi??? ND
social impact