In this paper we consider hyperbolic systems with relaxation in which the relaxation time ε may vary from values of order one to very small values. When ε is very small, the relaxation term becomes very strong and highly stiff, and underresolved numerical schemes may produce spu- rious results. In such cases it is important to have schemes that work uniformly with respect to ε. IMplicit-EXplicit (IMEX) Runge–Kutta (R-K) schemes have been widely used for the time evolu- tion of hyperbolic partial differential equations but the schemes existing in literature do not exhibit uniform accuracy with respect to the relaxation time. We develop new IMEX R-K schemes for hy- perbolic systems with relaxation that present better uniform accuracy than the ones existing in the literature and in particular produce good behavior with high order accuracy in the asymptotic limit, i.e., when ε is very small. These schemes are obtained by imposing new additional order conditions to guarantee better accuracy over a wide range of the relaxation time. We propose the construction of new third-order IMEX R-K schemes of type CK [S. Boscarino, SIAM J. Numer. Anal., 45 (2008), pp. 1600–1621]. In several test problems, these schemes, with a fixed spatial discretization, exhibit for all range of the relaxation time an almost uniform third-order accuracy.

On a class of uniformly accurate IMEX Runge-Kutta schemes and applications to hyperbolic systems with relaxation

BOSCARINO, SEBASTIANO;RUSSO, Giovanni
2009-01-01

Abstract

In this paper we consider hyperbolic systems with relaxation in which the relaxation time ε may vary from values of order one to very small values. When ε is very small, the relaxation term becomes very strong and highly stiff, and underresolved numerical schemes may produce spu- rious results. In such cases it is important to have schemes that work uniformly with respect to ε. IMplicit-EXplicit (IMEX) Runge–Kutta (R-K) schemes have been widely used for the time evolu- tion of hyperbolic partial differential equations but the schemes existing in literature do not exhibit uniform accuracy with respect to the relaxation time. We develop new IMEX R-K schemes for hy- perbolic systems with relaxation that present better uniform accuracy than the ones existing in the literature and in particular produce good behavior with high order accuracy in the asymptotic limit, i.e., when ε is very small. These schemes are obtained by imposing new additional order conditions to guarantee better accuracy over a wide range of the relaxation time. We propose the construction of new third-order IMEX R-K schemes of type CK [S. Boscarino, SIAM J. Numer. Anal., 45 (2008), pp. 1600–1621]. In several test problems, these schemes, with a fixed spatial discretization, exhibit for all range of the relaxation time an almost uniform third-order accuracy.
2009
Runge-Kutta methods; stiff problems; hyperbolic systems with relaxation; order conditions
File in questo prodotto:
File Dimensione Formato  
Boscarino-Russo-SISC-2009.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 482.26 kB
Formato Adobe PDF
482.26 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/5015
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 87
  • ???jsp.display-item.citation.isi??? 82
social impact