The functionality advancements and novel customer features that are currently found in modern automotive systems require high-bandwidth and low-latency in-vehicle communications, which become even more compelling for autonomous vehicles. In a recent effort to meet these requirements, the IEEE Time-Sensitive Networking (TSN) task group has developed a set of standards that introduce novel features in Switched Ethernet. TSN standards offer, for example, a common notion of time through accurate and reliable clock synchronization, delay bounds for real-time traffic, time-driven transmissions, improved reliability, and much more. In order to fully utilize the potential of these novel protocols in the automotive domain, TSN should be seamlessly integrated into the state-of-the-art and state-of-practice model-based development processes for automotive embedded systems. Some of the core phases in these processes include software architecture modeling, timing predictability verification, simulation, and hardware realization and deployment. Moreover, throughout the development of automotive embedded systems, the safety and security requirements specified on these systems need to be duly taken into account. In this context, this work provides an overview of TSN in automotive applications and discusses the recent technological developments relevant to the adoption of TSN in automotive embedded systems. The work also points at the open challenges and future research directions.

Time-Sensitive Networking in automotive embedded systems: State of the art and research opportunities

Lo Bello L.;Patti G.;
2021-01-01

Abstract

The functionality advancements and novel customer features that are currently found in modern automotive systems require high-bandwidth and low-latency in-vehicle communications, which become even more compelling for autonomous vehicles. In a recent effort to meet these requirements, the IEEE Time-Sensitive Networking (TSN) task group has developed a set of standards that introduce novel features in Switched Ethernet. TSN standards offer, for example, a common notion of time through accurate and reliable clock synchronization, delay bounds for real-time traffic, time-driven transmissions, improved reliability, and much more. In order to fully utilize the potential of these novel protocols in the automotive domain, TSN should be seamlessly integrated into the state-of-the-art and state-of-practice model-based development processes for automotive embedded systems. Some of the core phases in these processes include software architecture modeling, timing predictability verification, simulation, and hardware realization and deployment. Moreover, throughout the development of automotive embedded systems, the safety and security requirements specified on these systems need to be duly taken into account. In this context, this work provides an overview of TSN in automotive applications and discusses the recent technological developments relevant to the adoption of TSN in automotive embedded systems. The work also points at the open challenges and future research directions.
2021
Automotive embedded systems
Time-Sensitive Networking
TSN
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/507957
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 75
  • ???jsp.display-item.citation.isi??? 47
social impact