The production of high-quality semiconducting nanostructures with optimized electrical, optical, and electromechanical properties is important for the advancement of next-generation technologies. In this context, we herein report on highly obliquely aligned single-crystalline zinc oxide nanosheets (ZnO NSs) grown via the vapor-liquid-solid approach using r-plane (01-12) sapphire as the template surface. The high structural and optical quality of as-grown ZnO NSs has been confirmed using high-resolution transmission electron microscopy and temperature-dependent photoluminescence, respectively. To assess the potential of our NSs as effective building materials in high-performance flexible electronics, we fabricate organic (parylene C)/inorganic (ZnO NS) hybrid field-effect transistor (FET) devices on flexible substrates using room-temperature assembly processes. Extraction of key FET performance parameters suggests that as-grown ZnO NSs can successfully function as excellent n-type semiconducting modules. Such devices are found to consistently show very high on-state currents (I-on) > 40 mu A, high field-effect mobility (mu(eff)) > 200 cm(2)/(V s), exceptionally high on/off current modulation ratio (I-on/off) of around 109, steep subthreshold swing (s-s) < 200 mV/decade, very low hysteresis, and negligible threshold voltage shifts with prolonged electrical stressing (up to 340 min). The present study delivers a concept of integrating high-quality ZnO NS as active semiconducting elements in flexible electronic circuits.

Flexible Organic/Inorganic Hybrid Field-Effect Transistors with High Performance and Operational Stability

MIRABELLA, SALVATORE;
2017-01-01

Abstract

The production of high-quality semiconducting nanostructures with optimized electrical, optical, and electromechanical properties is important for the advancement of next-generation technologies. In this context, we herein report on highly obliquely aligned single-crystalline zinc oxide nanosheets (ZnO NSs) grown via the vapor-liquid-solid approach using r-plane (01-12) sapphire as the template surface. The high structural and optical quality of as-grown ZnO NSs has been confirmed using high-resolution transmission electron microscopy and temperature-dependent photoluminescence, respectively. To assess the potential of our NSs as effective building materials in high-performance flexible electronics, we fabricate organic (parylene C)/inorganic (ZnO NS) hybrid field-effect transistor (FET) devices on flexible substrates using room-temperature assembly processes. Extraction of key FET performance parameters suggests that as-grown ZnO NSs can successfully function as excellent n-type semiconducting modules. Such devices are found to consistently show very high on-state currents (I-on) > 40 mu A, high field-effect mobility (mu(eff)) > 200 cm(2)/(V s), exceptionally high on/off current modulation ratio (I-on/off) of around 109, steep subthreshold swing (s-s) < 200 mV/decade, very low hysteresis, and negligible threshold voltage shifts with prolonged electrical stressing (up to 340 min). The present study delivers a concept of integrating high-quality ZnO NS as active semiconducting elements in flexible electronic circuits.
2017
Zinc oxide, nanosheets, organic/inorganic hybrid, field-effect transistors, flexible substrates.
File in questo prodotto:
File Dimensione Formato  
acsami.6b13472.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Dimensione 5.82 MB
Formato Adobe PDF
5.82 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/50797
Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 27
social impact