Mitochondrial porin or VDAC (Voltage Dependent Anion selective Channels) was identified for the first time in 1976, on the basis of the evolutionary similarity between the gram negative and mitochondrial outer membranes. Since this achievement VDAC has been extensively investigated: its functional features have been sharply defined upon reconstitution in artificial membranes and its sequence has been determined in many genomes. Unfortunately the tertiary structure has not yet been solved, mainly because it proved to be very difficult to get suitable crystals. Despite this established knowledge, in the last few years this protein has attracted renewed interest. There are two main reasons for this interest: the discovery, in most eukaryotes, of a family of genes encoding VDAC isoforms and the claims of VDAC involvement in the intrinsic pathway of apoptosis and in particular in the mechanism of cytochrome c release from mitochondria. We can affirm that nowadays the eukaryotic porin (or VDAC) is studied in a more general cellular contest, looking at the interactions and integration with other molecules, since VDAC is in a crucial position in the cell, forming the main interface between the mitochondrial and the cellular metabolisms. In this minireview we will briefly focus our attention onto the following topics: 1) recent advances about the structure of VDAC; 2) the VDAC-related multigene families; 3) the presence, targeting and function of VDAC in various cell membranes.

New functions of an old protein: the eukaryotic porin or voltage dependent anion selective channel (VDAC)

DE PINTO, Vito Nicola;GUARINO, FRANCESCA MARIA;MESSINA, Angela Anna;
2003-01-01

Abstract

Mitochondrial porin or VDAC (Voltage Dependent Anion selective Channels) was identified for the first time in 1976, on the basis of the evolutionary similarity between the gram negative and mitochondrial outer membranes. Since this achievement VDAC has been extensively investigated: its functional features have been sharply defined upon reconstitution in artificial membranes and its sequence has been determined in many genomes. Unfortunately the tertiary structure has not yet been solved, mainly because it proved to be very difficult to get suitable crystals. Despite this established knowledge, in the last few years this protein has attracted renewed interest. There are two main reasons for this interest: the discovery, in most eukaryotes, of a family of genes encoding VDAC isoforms and the claims of VDAC involvement in the intrinsic pathway of apoptosis and in particular in the mechanism of cytochrome c release from mitochondria. We can affirm that nowadays the eukaryotic porin (or VDAC) is studied in a more general cellular contest, looking at the interactions and integration with other molecules, since VDAC is in a crucial position in the cell, forming the main interface between the mitochondrial and the cellular metabolisms. In this minireview we will briefly focus our attention onto the following topics: 1) recent advances about the structure of VDAC; 2) the VDAC-related multigene families; 3) the presence, targeting and function of VDAC in various cell membranes.
2003
porin; VDAC
File in questo prodotto:
File Dimensione Formato  
ItJBioc52.17.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 96.84 kB
Formato Adobe PDF
96.84 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/50807
Citazioni
  • ???jsp.display-item.citation.pmc??? 15
  • Scopus 64
  • ???jsp.display-item.citation.isi??? ND
social impact