The results of X-ray photoelectron spectra (XPS) characterization of the surface of Ag-Au colloidal nanoparticles (Ag-Au NPs), prepared by laser ablation in water before and after interaction with linear carbon chains (LCC), are presented. No additional features appear in high-energy resolved XPS core level spectra of Ag-Au NPs which indicates that surface is not oxidized. The measurements of XPS Ag 3d-spectrum of (Ag-Au)@LCC manifests the additional low-energy structure that is associated with the formation of Ag–C bonds. The charge transfer between Au atoms on the NPs surface and LCC was established. Additionally, some oxidation of the Ag atoms on the surface of (Ag-Au)@LCC is observed which arises during laser ablation in water. We assume that oxidative species will preferably interact with the areas outside the LCC instead of oxidizing the carbon chains which was confirmed by XPS C 1s spectra.

X-ray photoelectron spectra of Ag-Au colloidal nanoparticles after interaction with linear carbon chains

Condorelli M.;D'urso L.
2021-01-01

Abstract

The results of X-ray photoelectron spectra (XPS) characterization of the surface of Ag-Au colloidal nanoparticles (Ag-Au NPs), prepared by laser ablation in water before and after interaction with linear carbon chains (LCC), are presented. No additional features appear in high-energy resolved XPS core level spectra of Ag-Au NPs which indicates that surface is not oxidized. The measurements of XPS Ag 3d-spectrum of (Ag-Au)@LCC manifests the additional low-energy structure that is associated with the formation of Ag–C bonds. The charge transfer between Au atoms on the NPs surface and LCC was established. Additionally, some oxidation of the Ag atoms on the surface of (Ag-Au)@LCC is observed which arises during laser ablation in water. We assume that oxidative species will preferably interact with the areas outside the LCC instead of oxidizing the carbon chains which was confirmed by XPS C 1s spectra.
2021
Ag-Au alloy
Electronic structure
Linear carbon chains
Nanoparticles
Oxidation
XPS
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/508863
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact