Improvement on the stability and loading of unfunctionalized single wall carbon nanotubes (SWNTs) in amide solvents is necessary to enhance the performances of SWNT-polymer composites used for optical applications (e.g., as non-linear saturable absorbers). We show that polyvinylpyrrolidone (PVP) can not only increase the stability of ultrasonically dispersed HiPco SWNTs in pure N-methyl-2-pyrrolidone (NMP), but also improve the photoluminescence emission signals from SWNTs even after 1 month of incubation. Compared to two non-ionic surfactants (Igepal DM-970 and Pluronic F-98), we find that PVP-aided SWNT dispersions in NMP can improve the SWNT loading by at least four times. Unlike surfactant-aided dispersions, the PVP-aided dispersions remain completely stable by close visual inspection even after 6 months of incubation. © 2007 Elsevier B.V. All rights reserved.
Dispersibility and stability improvement of unfunctionalized nanotubes in amide solvents by polymer wrapping
Scardaci V.Membro del Collaboration Group
;
2008-01-01
Abstract
Improvement on the stability and loading of unfunctionalized single wall carbon nanotubes (SWNTs) in amide solvents is necessary to enhance the performances of SWNT-polymer composites used for optical applications (e.g., as non-linear saturable absorbers). We show that polyvinylpyrrolidone (PVP) can not only increase the stability of ultrasonically dispersed HiPco SWNTs in pure N-methyl-2-pyrrolidone (NMP), but also improve the photoluminescence emission signals from SWNTs even after 1 month of incubation. Compared to two non-ionic surfactants (Igepal DM-970 and Pluronic F-98), we find that PVP-aided SWNT dispersions in NMP can improve the SWNT loading by at least four times. Unlike surfactant-aided dispersions, the PVP-aided dispersions remain completely stable by close visual inspection even after 6 months of incubation. © 2007 Elsevier B.V. All rights reserved.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.