Buspirone is an anxiolytic drug with robust serotonin receptor 1A (Htr1a) agonist activities. However, evidence has demonstrated that this drug also targets the dopamine D3 receptor (Drd3), where it acts as a potent antagonist. In vivo, Drd3 blockade is neuroprotective and reduces inflammation in models of Parkinson's disease. To test if buspirone also elicited anti-inflammatory activities in vitro, we generated stable Drd3-/- and Htr1a-/- BV2 microglial cell lines using CRISPR-Cas9 technology and then tested the effects of buspirone after lipopolysaccharide (LPS) challenge. We found that LPS exposure had no effect on cell viability, except in Htr1a-/- cells, where viability was reduced (p < 0.001). Drug treatment reduced viability in Drd3-/- cells, but not in WT or Htr1a-/- cells. Buspirone counteracted LPS-induced NO release, NOS2, IL-1β and TNF-α gene expression in WT cells, whereas it exerted limited effects in Drd3-/- or Htr1a-/- microglia. In summary, our findings indicate that buspirone attenuates microglial polarization after LPS challenge. These results also highlight some major effects of Drd3 or Htr1a genetic ablation on microglial biology, raising important questions on the complex role of neurotransmitters in regulating microglia functions.

Assessing the Anti-Inflammatory Activity of the Anxiolytic Drug Buspirone Using CRISPR-Cas9 Gene Editing in LPS-Stimulated BV-2 Microglial Cells

Musumeci, Giuseppe;
2021-01-01

Abstract

Buspirone is an anxiolytic drug with robust serotonin receptor 1A (Htr1a) agonist activities. However, evidence has demonstrated that this drug also targets the dopamine D3 receptor (Drd3), where it acts as a potent antagonist. In vivo, Drd3 blockade is neuroprotective and reduces inflammation in models of Parkinson's disease. To test if buspirone also elicited anti-inflammatory activities in vitro, we generated stable Drd3-/- and Htr1a-/- BV2 microglial cell lines using CRISPR-Cas9 technology and then tested the effects of buspirone after lipopolysaccharide (LPS) challenge. We found that LPS exposure had no effect on cell viability, except in Htr1a-/- cells, where viability was reduced (p < 0.001). Drug treatment reduced viability in Drd3-/- cells, but not in WT or Htr1a-/- cells. Buspirone counteracted LPS-induced NO release, NOS2, IL-1β and TNF-α gene expression in WT cells, whereas it exerted limited effects in Drd3-/- or Htr1a-/- microglia. In summary, our findings indicate that buspirone attenuates microglial polarization after LPS challenge. These results also highlight some major effects of Drd3 or Htr1a genetic ablation on microglial biology, raising important questions on the complex role of neurotransmitters in regulating microglia functions.
2021
5-hydroxytryptamine 1a receptor
Parkinson’s disease
dopamine D3 receptor
microglia
neuroinflammation
File in questo prodotto:
File Dimensione Formato  
cells-10-01312-v2.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.9 MB
Formato Adobe PDF
3.9 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/509167
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 12
social impact