Silver-based nanoparticles have attracted a broad interest due to their outstanding optical and chemical properties and have been studied for applications in many fields. While different synthetic routes have been explored, photochemical synthesis has attracted a special interest for its limited use of chemicals and ease of control over the shape and size of the nanoparticles. This paper reviews the main factors affecting the synthesis of anisotropic silver nanoparticles, such as irradiation wavelength, pH, etc., and the role of specific key molecules, such as citrate. The paper is structured into different sections depending on how the synthesis is initiated; thus, after the introduction, the photochemical conversion reaction starting from nanoparticles, or seeds, obtained chemically, is covered, followed by reactions from nanoparticles obtained by laser ablation by seedless reactions. After that, the applications proposed for anisotropic nanoparticles obtained by the methods discussed in the previous sections are briefly covered and, finally, the conclusions and the author’s perspectives are given.
Anisotropic silver nanomaterials by photochemical reactions: Synthesis and applications
Scardaci V.
2021-01-01
Abstract
Silver-based nanoparticles have attracted a broad interest due to their outstanding optical and chemical properties and have been studied for applications in many fields. While different synthetic routes have been explored, photochemical synthesis has attracted a special interest for its limited use of chemicals and ease of control over the shape and size of the nanoparticles. This paper reviews the main factors affecting the synthesis of anisotropic silver nanoparticles, such as irradiation wavelength, pH, etc., and the role of specific key molecules, such as citrate. The paper is structured into different sections depending on how the synthesis is initiated; thus, after the introduction, the photochemical conversion reaction starting from nanoparticles, or seeds, obtained chemically, is covered, followed by reactions from nanoparticles obtained by laser ablation by seedless reactions. After that, the applications proposed for anisotropic nanoparticles obtained by the methods discussed in the previous sections are briefly covered and, finally, the conclusions and the author’s perspectives are given.File | Dimensione | Formato | |
---|---|---|---|
nanomaterials-11-02226.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
3.8 MB
Formato
Adobe PDF
|
3.8 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.