Novel preparative approaches towards lamellar nanocomposites of carbon and inorganic materials are relevant for a broad range of technological applications. Here, we describe how to utilize the co-assembly of a liquid-crystalline hexaphenylene amphiphile and an aluminosilicate precursor to prepare carbon-aluminosilicate nanocomposites with controlled lamellar orientation and macroscopic order. To this end, the shear-induced alignment of a precursor phase of the two components resulted in thin films comprising lamellae with periodicities on the order of the molecular length scale, an “edge-on” orientation relative to the substrate and parallel to the shearing direction with order on the centimeter length scale. The lamellar structure, orientation, and macroscopic alignment were preserved in the subsequent pyrolysis that yielded the corresponding carbon-aluminosilicate nanocomposites.

Lamellar carbon-aluminosilicate nanocomposites with macroscopic orientation

Giovanni Li-Destri;
2021-01-01

Abstract

Novel preparative approaches towards lamellar nanocomposites of carbon and inorganic materials are relevant for a broad range of technological applications. Here, we describe how to utilize the co-assembly of a liquid-crystalline hexaphenylene amphiphile and an aluminosilicate precursor to prepare carbon-aluminosilicate nanocomposites with controlled lamellar orientation and macroscopic order. To this end, the shear-induced alignment of a precursor phase of the two components resulted in thin films comprising lamellae with periodicities on the order of the molecular length scale, an “edge-on” orientation relative to the substrate and parallel to the shearing direction with order on the centimeter length scale. The lamellar structure, orientation, and macroscopic alignment were preserved in the subsequent pyrolysis that yielded the corresponding carbon-aluminosilicate nanocomposites.
File in questo prodotto:
File Dimensione Formato  
lamellar carbon.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.75 MB
Formato Adobe PDF
2.75 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/512762
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact