Bedding plants in the nursery phase are often subject to drought stress because of the small volume of the containers and the hydraulic conductivity of organic substrates used. To analyse the morphological, physiological, and enzymatic responses of zinnia (Zinnia elegans L.) plants at different irrigation levels, four treatments were performed: irrigated at 100% (100% field capacity, FC); light deficit irrigation (75% FC), medium deficit irrigation (50% FC), and severe deficit irrigation (25% FC). The growth of zinnia was significantly influenced by drought stress treatments. Different morphological parameters (dry biomass, leaf number, root to shoot ratio (R/S)) were modified only in the more severe drought stress treatment (25% FC). The stomata density increased in 50% FC and 25% FC, while the stomata size was reduced in 25% FC. The net photosynthesis, stomatal conductance, and transpiration were reduced in 50% FC and 25% FC. The relative water content (RWC) was reduced in 25% FC. Severe drought stress (25% FC) increased proline content up to seven‐fold. Catalase (CAT), peroxidase (GPX), and superoxide dismutase (SOD) activity significantly increased in 50% FC and 25% FC. Principal component analysis (PCA) showed that the morphological and physiological parameters were mostly associated with the 100% FC and 75% FC treatments of the biplot, whereas the stomata density, R/S ratio, and antioxidant enzymes (GPX, CAT) were associated with 50% FC, and proline and DPPH were associated with 25% FC, respectively.

Morphological, physiological, and biochemical responses of zinnia to drought stress

Romano D.
2021-01-01

Abstract

Bedding plants in the nursery phase are often subject to drought stress because of the small volume of the containers and the hydraulic conductivity of organic substrates used. To analyse the morphological, physiological, and enzymatic responses of zinnia (Zinnia elegans L.) plants at different irrigation levels, four treatments were performed: irrigated at 100% (100% field capacity, FC); light deficit irrigation (75% FC), medium deficit irrigation (50% FC), and severe deficit irrigation (25% FC). The growth of zinnia was significantly influenced by drought stress treatments. Different morphological parameters (dry biomass, leaf number, root to shoot ratio (R/S)) were modified only in the more severe drought stress treatment (25% FC). The stomata density increased in 50% FC and 25% FC, while the stomata size was reduced in 25% FC. The net photosynthesis, stomatal conductance, and transpiration were reduced in 50% FC and 25% FC. The relative water content (RWC) was reduced in 25% FC. Severe drought stress (25% FC) increased proline content up to seven‐fold. Catalase (CAT), peroxidase (GPX), and superoxide dismutase (SOD) activity significantly increased in 50% FC and 25% FC. Principal component analysis (PCA) showed that the morphological and physiological parameters were mostly associated with the 100% FC and 75% FC treatments of the biplot, whereas the stomata density, R/S ratio, and antioxidant enzymes (GPX, CAT) were associated with 50% FC, and proline and DPPH were associated with 25% FC, respectively.
2021
Bedding plants
Deficit irrigation
Enzyme activity
Gas exchange
Proline
Stomata characteristics
Zinnia elegans L
File in questo prodotto:
File Dimensione Formato  
59. Toscano & Romano 2021.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.55 MB
Formato Adobe PDF
1.55 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/516742
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 10
social impact