Naringenin (40 ,5,7-trihydroxyflavanone-7-rhamnoglucosideor naringenin-7-rhamnoglucoside), a flavonoid present in large quantities in citrus, has different beneficial effects on human health as an antioxidant, free radical scavenger, anti-inflammatory, carbohydrate metabolism promoter, and immune system modulator. Different studies have shown that this substance also has a hypoglycemic and antihypertensive effect, reduces cholesterol and triglycerides, and plays an important protective role in the heart tissue; moreover, it provides neuroprotection against various neurological disorders such as Parkinson’s disease and unpredictable chronic stress-induced depression. Despite these advantages, Naringenin is poorly absorbed, and the small percentage absorbed is rapidly degraded by the liver, as a result losing its activity. Several approaches have been attempted to overcome these obstacles, among them, nanotechnology, with the use of Drug Delivery Systems (DDS) as Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC). DDS can, in fact, improve the drug bioavailability. The aim of this study was to develop and characterize SLN and NLC containing Naringenin and to evaluate the ability of these nanoparticles to release Naringenin at the cell level using biomembrane models represented by Multilamellar Vesicles (MLV). These studies were performed using Differential Scanning Calorimetry, a powerful technique to detect the interaction of drugs and delivery systems with MLV. It was shown that Naringenin could be better incorporated into NLC with respect to SLN and that Naringenin could be released by NLC into the biomembrane model. Therefore, suggesting the administration of Naringenin loaded into nanoparticles could help avoid the disadvantages associated with the use of the free molecule.

Naringenin Release to Biomembrane Models by Incorporation into Nanoparticles. Experimental Evidence Using Differential Scanning Calorimetry

Torrisi, Cristina;Castelli, Francesco;Sarpietro, Maria Grazia
2021-01-01

Abstract

Naringenin (40 ,5,7-trihydroxyflavanone-7-rhamnoglucosideor naringenin-7-rhamnoglucoside), a flavonoid present in large quantities in citrus, has different beneficial effects on human health as an antioxidant, free radical scavenger, anti-inflammatory, carbohydrate metabolism promoter, and immune system modulator. Different studies have shown that this substance also has a hypoglycemic and antihypertensive effect, reduces cholesterol and triglycerides, and plays an important protective role in the heart tissue; moreover, it provides neuroprotection against various neurological disorders such as Parkinson’s disease and unpredictable chronic stress-induced depression. Despite these advantages, Naringenin is poorly absorbed, and the small percentage absorbed is rapidly degraded by the liver, as a result losing its activity. Several approaches have been attempted to overcome these obstacles, among them, nanotechnology, with the use of Drug Delivery Systems (DDS) as Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC). DDS can, in fact, improve the drug bioavailability. The aim of this study was to develop and characterize SLN and NLC containing Naringenin and to evaluate the ability of these nanoparticles to release Naringenin at the cell level using biomembrane models represented by Multilamellar Vesicles (MLV). These studies were performed using Differential Scanning Calorimetry, a powerful technique to detect the interaction of drugs and delivery systems with MLV. It was shown that Naringenin could be better incorporated into NLC with respect to SLN and that Naringenin could be released by NLC into the biomembrane model. Therefore, suggesting the administration of Naringenin loaded into nanoparticles could help avoid the disadvantages associated with the use of the free molecule.
2021
Naringenin, differential scanning calorimetry, nanoparticles, multilamellar vesicles, biomembrane model
File in questo prodotto:
File Dimensione Formato  
89 surfaces-04-00025.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.44 MB
Formato Adobe PDF
2.44 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/519480
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 4
social impact