This contribution reports a simple and straightforward photochemical method for decorating hydrophobic surfaces with metal and metal oxide nanoparticles. The presented process includes the steps of providing a metal precursor having hydrophobic parts adapted to interact with assistance of a photosensitizer and forming a reactive adduct precursor metal/surface; the process allows the metal nanoparticles to grow directly onto the surface. The formed nanoparticles have been investigated by means of transmission electron microscopy (TEM) and optical techniques. The nanoparticles are sufficiently isolated, not aggregated and not interconnected; additionally, it is remarkable that the so-formed nanoparticles do not create a film, thus providing the treated surface with the chemical properties of both the substrate (surface portion not covered by the metal nanoparticles) and the metal. Substrates with multiple chemical functionalities are thereby obtained; they can selectively bind molecules with different chemistry, onto the uncovered substrate surface and onto metal nanoparticle surface. The proposed process also allows double decoration with two or more metallic species.

Photodecorated Surface with Nanoparticles: Versatile Substrates for Technology Applications

Petralia S.
;
2018-01-01

Abstract

This contribution reports a simple and straightforward photochemical method for decorating hydrophobic surfaces with metal and metal oxide nanoparticles. The presented process includes the steps of providing a metal precursor having hydrophobic parts adapted to interact with assistance of a photosensitizer and forming a reactive adduct precursor metal/surface; the process allows the metal nanoparticles to grow directly onto the surface. The formed nanoparticles have been investigated by means of transmission electron microscopy (TEM) and optical techniques. The nanoparticles are sufficiently isolated, not aggregated and not interconnected; additionally, it is remarkable that the so-formed nanoparticles do not create a film, thus providing the treated surface with the chemical properties of both the substrate (surface portion not covered by the metal nanoparticles) and the metal. Substrates with multiple chemical functionalities are thereby obtained; they can selectively bind molecules with different chemistry, onto the uncovered substrate surface and onto metal nanoparticle surface. The proposed process also allows double decoration with two or more metallic species.
2018
Biomaterials
Biosensors
Metal nanoparticles
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/519615
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact