We present a study of the directed flow v1 for D mesons discussing both the impact of initial vorticity and electromagnetic field. Recent studies predicted that v1 for D mesons is expected to be surprisingly much larger than that of light charged hadrons; we clarify that this is due to a different mechanism leading to the formation of a directed flow with respect to the one of the bulk matter at both relativistic and non-relativistic energies. We point out that the very large v1 for D mesons can be generated only if there is a longitudinal asymmetry between the bulk matter and the charm quarks and if the latter have a large non-perturbative interaction in the QGP medium. A quite good agreement with the data of STAR and ALICE is obtained if the diffusion coefficient able to correctly predict the RAA(pT), v2(pT) and v3(pT) of D meson is employed. Furthermore, the mechanism for the build-up of the v1(y) is associated to a quite small formation time that can be expected to be more sensitive to the initial high-temperature dependence of the charm diffusion coefficient. We discuss also the splitting of v1 for D0 and D¯ due to the electromagnetic field that is again much larger than the one observed for charged particles and in agreement with the data by STAR that have however still error bars comparable with the splitting itself, while at LHC standard electromagnetic profile assuming a constant conductivity is not able to account for the huge splitting observed.

Directed flow of D mesons at RHIC and LHC: non-perturbative dynamics, longitudinal bulk matter asymmetry and electromagnetic fields

Oliva L.;Plumari S.;Greco V.
2021-01-01

Abstract

We present a study of the directed flow v1 for D mesons discussing both the impact of initial vorticity and electromagnetic field. Recent studies predicted that v1 for D mesons is expected to be surprisingly much larger than that of light charged hadrons; we clarify that this is due to a different mechanism leading to the formation of a directed flow with respect to the one of the bulk matter at both relativistic and non-relativistic energies. We point out that the very large v1 for D mesons can be generated only if there is a longitudinal asymmetry between the bulk matter and the charm quarks and if the latter have a large non-perturbative interaction in the QGP medium. A quite good agreement with the data of STAR and ALICE is obtained if the diffusion coefficient able to correctly predict the RAA(pT), v2(pT) and v3(pT) of D meson is employed. Furthermore, the mechanism for the build-up of the v1(y) is associated to a quite small formation time that can be expected to be more sensitive to the initial high-temperature dependence of the charm diffusion coefficient. We discuss also the splitting of v1 for D0 and D¯ due to the electromagnetic field that is again much larger than the one observed for charged particles and in agreement with the data by STAR that have however still error bars comparable with the splitting itself, while at LHC standard electromagnetic profile assuming a constant conductivity is not able to account for the huge splitting observed.
2021
Heavy Ion Phenomenology
QCD Phenomenology
File in questo prodotto:
File Dimensione Formato  
Oliva2021_Article_DirectedFlowOfDMesonsAtRHICAnd.pdf

accesso aperto

Descrizione: Articolo principale
Dimensione 842.78 kB
Formato Adobe PDF
842.78 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/519719
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? ND
social impact