A dodecagon quadrangle is the graph consisting of two cycles: a 12-cycle (x1,x2,...,x12) and a 4-cycle (x1,x4,x7,x10). A dodecagon quadrangle system of order n and index L [DQS] is a pair (X;H), where X is a finite set of n vertices and H is a collection of edge disjoint dodecagon quadrangles (called blocks) which partitions the edge set of L.K(n), with vertex set X. A dodecagon quadrangle system of order n is said to be perfect [PDQS] if the collection of 4-cycles contained in the dodecagon quadrangles form a 4-cycle system of order n and index M. In this paper we determine completely the spectrum of DQSs of index one and of PDQSs with the inside 4-cycle system of index one.
In questo lavoro gli autori studiano i sistemi DQS (dodecagon quadrangle systems) che siano perfetti (ODQS), determinando in modo completo sia lo spettro dei DQS aventi indice uno, sia lo spettro dei PDQS di indice uno. Un DQS è un G-design in cui G è un dodecagono di vertici (x1,x2,...,x12) (nell'ordine) con l'aggiunta delle corde [x1,x4],[x4,x7],[x7,x10],[x1,x10]. Un DQS di indice L è detto "perfetto" se le corde [x1,x4],[x4,x7],[x7,x10],[x1,x10] formano un C(4)-system di indice M.
Perfect dodecagon quadrangle systems
GIONFRIDDO, Mario;
2010-01-01
Abstract
A dodecagon quadrangle is the graph consisting of two cycles: a 12-cycle (x1,x2,...,x12) and a 4-cycle (x1,x4,x7,x10). A dodecagon quadrangle system of order n and index L [DQS] is a pair (X;H), where X is a finite set of n vertices and H is a collection of edge disjoint dodecagon quadrangles (called blocks) which partitions the edge set of L.K(n), with vertex set X. A dodecagon quadrangle system of order n is said to be perfect [PDQS] if the collection of 4-cycles contained in the dodecagon quadrangles form a 4-cycle system of order n and index M. In this paper we determine completely the spectrum of DQSs of index one and of PDQSs with the inside 4-cycle system of index one.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.