Second-order processes in physics is a research topic focusing attention from several fields worldwide including, for example, non-linear quantum electrodynamics with high-power lasers, neutrinoless double-β decay, and stimulated atomic two-photon transitions. For the electromagnetic nuclear interaction, the observation of the competitive double-γ decay from 137mBa has opened up the nuclear structure field for detailed investigation of second-order processes through the manifestation of off-diagonal nuclear polarisability. Here, we confirm this observation with an 8.7σ significance, and an improved value on the double-photon versus single-photon branching ratio as 2.62 × 10−6(30). Our results, however, contradict the conclusions from the original experiment, where the decay was interpreted to be dominated by a quadrupole-quadrupole component. Here, we find a substantial enhancement in the energy distribution consistent with a dominating octupole-dipole character and a rather small quadrupole-quadrupole component in the decay, hindered due to an evolution of the internal nuclear structure. The implied strongly hindered double-photon branching in 137mBa opens up the possibility of the double-photon branching as a feasible tool for nuclear-structure studies on off-diagonal polarisability in nuclei where this hindrance is not present.
Electromagnetic character of the competitive γ γ/γ-decay from 137mBa
Guardo G. L.;Lattuada D.;
2020-01-01
Abstract
Second-order processes in physics is a research topic focusing attention from several fields worldwide including, for example, non-linear quantum electrodynamics with high-power lasers, neutrinoless double-β decay, and stimulated atomic two-photon transitions. For the electromagnetic nuclear interaction, the observation of the competitive double-γ decay from 137mBa has opened up the nuclear structure field for detailed investigation of second-order processes through the manifestation of off-diagonal nuclear polarisability. Here, we confirm this observation with an 8.7σ significance, and an improved value on the double-photon versus single-photon branching ratio as 2.62 × 10−6(30). Our results, however, contradict the conclusions from the original experiment, where the decay was interpreted to be dominated by a quadrupole-quadrupole component. Here, we find a substantial enhancement in the energy distribution consistent with a dominating octupole-dipole character and a rather small quadrupole-quadrupole component in the decay, hindered due to an evolution of the internal nuclear structure. The implied strongly hindered double-photon branching in 137mBa opens up the possibility of the double-photon branching as a feasible tool for nuclear-structure studies on off-diagonal polarisability in nuclei where this hindrance is not present.File | Dimensione | Formato | |
---|---|---|---|
NatureCommunication.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Dimensione
1.02 MB
Formato
Adobe PDF
|
1.02 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.