Chemical and structural modifications occurring in homogeneous crystalline Si nanoparticles (NPs) used as anode material in Li cells are investigated. State-of-the-art high-resolution scanning transmission electron microscopy coupled with electron energy loss spectroscopy resolved at the nanoscale is exploited. It is directly highlighted by electron spectromicroscopy that, above 0.1 V versus Li, the electrochemical activity of Si electrodes involves a complex interplay between Li incorporation, electrolyte degradation, and Si reduction/oxidation. These redox processes occur upon cycling through partially reversible reactions mediated by the solid electrolyte interphase. Overall, a SiO2 amorphous layer forms in the oxidized electrodes at the Si NPs interface with the electrolyte: this oxide shell partially dissolves upon reduction to give Li2CO3 and amorphous Si. Si NPs cores are therefore eroded upon cycling as their outer layers are directly involved in a reversible oxygen shifting mechanism at the interface, whereas unreacted SiO2 accumulates cycle-by-cycle. These findings extend the comprehension of the Si pulverization mechanism in Li batteries.

On the Redox Activity of the Solid Electrolyte Interphase in the Reduction/Oxidation of Silicon Nanoparticles in Secondary Lithium Batteries

Monforte F.;Condorelli G. G.;
2022-01-01

Abstract

Chemical and structural modifications occurring in homogeneous crystalline Si nanoparticles (NPs) used as anode material in Li cells are investigated. State-of-the-art high-resolution scanning transmission electron microscopy coupled with electron energy loss spectroscopy resolved at the nanoscale is exploited. It is directly highlighted by electron spectromicroscopy that, above 0.1 V versus Li, the electrochemical activity of Si electrodes involves a complex interplay between Li incorporation, electrolyte degradation, and Si reduction/oxidation. These redox processes occur upon cycling through partially reversible reactions mediated by the solid electrolyte interphase. Overall, a SiO2 amorphous layer forms in the oxidized electrodes at the Si NPs interface with the electrolyte: this oxide shell partially dissolves upon reduction to give Li2CO3 and amorphous Si. Si NPs cores are therefore eroded upon cycling as their outer layers are directly involved in a reversible oxygen shifting mechanism at the interface, whereas unreacted SiO2 accumulates cycle-by-cycle. These findings extend the comprehension of the Si pulverization mechanism in Li batteries.
2022
electron energy loss spectroscopy
lithium-ion batteries
silicon
solid electrolyte interphase
transmission electron microscopy
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/522345
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 4
social impact