In the recent years, increasing scientific and societal concern has been raised over the presence and accumulation of plastic debris in the environment and the effects of microplastics (MPs) that can easily interact with biota. In order to elucidate the impact of MPs at the critical development stages of freshwater fish species, a fish embryo toxicity test was herein performed on the zebrafish Danio rerio, exposed to 10 μm polystyrene MPs at 200 particles/mL for 120 hpf. After exposure, accumulation of MPs in larvae was measured, survival, hatching and larvae development were monitored and the oxidant/anti-oxidant responses and cellular detoxification evaluated. No impact on survival of developing zebrafish was revealed, but a moderate delay in hatching was observed. Alterations in larvae development were recorded with zebrafish exhibiting serious deformities, mainly at the level of column and tail, as well as a compromised integrity of the visual structure of the eyes. Moreover, increased levels of gene transcription involved in the oxidative stress (sod1, sod2 and cat) and in cellular detoxification (gst and cyp) were also detected in MPs-exposed zebrafish larvae. Overall, this research work provides new insights on the ecotoxicological impact of polystyrene MPs on the critical developmental stages of a freshwater fish species, therefore enhancing the current knowledge of the environmental risk posed by MPs to the aquatic ecosystem.

Embryotoxicity of polystyrene microplastics in zebrafish Danio rerio

De Marco G.;Oliveri Conti G.;Pulvirenti E.;Mauceri A.;Ferrante M.;
2022-01-01

Abstract

In the recent years, increasing scientific and societal concern has been raised over the presence and accumulation of plastic debris in the environment and the effects of microplastics (MPs) that can easily interact with biota. In order to elucidate the impact of MPs at the critical development stages of freshwater fish species, a fish embryo toxicity test was herein performed on the zebrafish Danio rerio, exposed to 10 μm polystyrene MPs at 200 particles/mL for 120 hpf. After exposure, accumulation of MPs in larvae was measured, survival, hatching and larvae development were monitored and the oxidant/anti-oxidant responses and cellular detoxification evaluated. No impact on survival of developing zebrafish was revealed, but a moderate delay in hatching was observed. Alterations in larvae development were recorded with zebrafish exhibiting serious deformities, mainly at the level of column and tail, as well as a compromised integrity of the visual structure of the eyes. Moreover, increased levels of gene transcription involved in the oxidative stress (sod1, sod2 and cat) and in cellular detoxification (gst and cyp) were also detected in MPs-exposed zebrafish larvae. Overall, this research work provides new insights on the ecotoxicological impact of polystyrene MPs on the critical developmental stages of a freshwater fish species, therefore enhancing the current knowledge of the environmental risk posed by MPs to the aquatic ecosystem.
2022
Zebrafish Danio rerio
Developmental defects
Fish embryo toxicity test
Oxidative stress and detoxification responses
Polystyrene microplastics
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0013935121018533-main (1).pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Dimensione 3.75 MB
Formato Adobe PDF
3.75 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/522497
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 70
  • ???jsp.display-item.citation.isi??? 63
social impact