The evolution of plastic responses to external cues allows species to maintain fitness in response to the environmental variation they regularly experience. However, it remains unclear how plasticity evolves during adaptation. To test whether distinct patterns of plasticity are associated with adaptive divergence, we quantified plasticity for two closely related but ecologically divergent Sicilian daisy species (Senecio, Asteraceae). We sampled c.40 representative genotypes of each species from their native range on Mt Etna and then reciprocally transplanted multiple clones of each genotype into four field sites along an elevational gradient that included the native elevational range of each species, and two intermediate elevations. At each elevation we quantified survival and measured leaf traits that included investment (specific leaf area), morphology, chlorophyll fluorescence, pigment content and gene expression. Traits and differentially expressed genes that changed with elevation in one species often showed little change in the other species, or changed in the opposite direction. As evidence of adaptive divergence, both species performed better at their native site and better than the species from the other habitat. Adaptive divergence is therefore associated with the evolution of distinct plastic responses to environmental variation, despite these two species sharing a recent common ancestor.

Adaptive divergence generates distinct plastic responses in two closely related Senecio species

Cristaudo A.;Terranova D.;Catara S.;
2022-01-01

Abstract

The evolution of plastic responses to external cues allows species to maintain fitness in response to the environmental variation they regularly experience. However, it remains unclear how plasticity evolves during adaptation. To test whether distinct patterns of plasticity are associated with adaptive divergence, we quantified plasticity for two closely related but ecologically divergent Sicilian daisy species (Senecio, Asteraceae). We sampled c.40 representative genotypes of each species from their native range on Mt Etna and then reciprocally transplanted multiple clones of each genotype into four field sites along an elevational gradient that included the native elevational range of each species, and two intermediate elevations. At each elevation we quantified survival and measured leaf traits that included investment (specific leaf area), morphology, chlorophyll fluorescence, pigment content and gene expression. Traits and differentially expressed genes that changed with elevation in one species often showed little change in the other species, or changed in the opposite direction. As evidence of adaptive divergence, both species performed better at their native site and better than the species from the other habitat. Adaptive divergence is therefore associated with the evolution of distinct plastic responses to environmental variation, despite these two species sharing a recent common ancestor.
2022
adaptive divergence
differential gene expression
environmental sensitivity
evolutionary history
phenotypic plasticity
adaptation
File in questo prodotto:
File Dimensione Formato  
Evolution_2022_Walter_Adaptive divergence.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Dimensione 2.26 MB
Formato Adobe PDF
2.26 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/525017
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact