The INFN-CIMA project deals with the employment of graphene, graphene oxide (GO) and reduced graphene oxide (rGO) for applications in Nuclear Physics. In particular, the project aim is that to use the special properties of GO, which can be synthesized as a thin foil with 0.1–100 µm thickness, to realize thin films for solid ion strippers employed in ion accelerator sources with lifetime advantages with respect to the traditional graphite foils. rGO thin foils can be employment to develop laser-generated plasma and to accelerate protons and carbon ions in target-normal-sheath-acceleration (TNSA) regime. The GO can be also employed for the realization of special sensors of temperature, air relative humidity and gas. Moreover, it can be used to realize water-equivalent, biocompatible and low dimensional, dosimeters based on the lecture of the reduction level produced by the absorbed dose. Finally, graphene and rGO films can be applied to investigate the implemantation ofsmall radiation detectors. Many applications and experimental results will be presented and discussed.

Carbon-based innovative materials for nuclear physics applications (CIMA), INFN project

Calcagno L.
Membro del Collaboration Group
;
Cutroneo M.;
2021-01-01

Abstract

The INFN-CIMA project deals with the employment of graphene, graphene oxide (GO) and reduced graphene oxide (rGO) for applications in Nuclear Physics. In particular, the project aim is that to use the special properties of GO, which can be synthesized as a thin foil with 0.1–100 µm thickness, to realize thin films for solid ion strippers employed in ion accelerator sources with lifetime advantages with respect to the traditional graphite foils. rGO thin foils can be employment to develop laser-generated plasma and to accelerate protons and carbon ions in target-normal-sheath-acceleration (TNSA) regime. The GO can be also employed for the realization of special sensors of temperature, air relative humidity and gas. Moreover, it can be used to realize water-equivalent, biocompatible and low dimensional, dosimeters based on the lecture of the reduction level produced by the absorbed dose. Finally, graphene and rGO films can be applied to investigate the implemantation ofsmall radiation detectors. Many applications and experimental results will be presented and discussed.
2021
detector
dosimeter
Graphene
ion stripper
sensor
TNSA
File in questo prodotto:
File Dimensione Formato  
torrisi2021.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.23 MB
Formato Adobe PDF
2.23 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/525719
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact