Intranasal administration has assumed in the last years an increasing value as an alternative strategy for the systemic adsorption of drugs, as an alternative to oral and parenteral routes thanks to the high vascularized nasal mucosa. Nevertheless, different drug features may restrict its absorption through the nasal mucosa with an insufficient diffusion to the systemic circulation. Several technological strategies are under investigation to improve drug absorption during nasal formulation design and production. The use of bioadhesive polymers can be considered a valid approach to pursue the aforementioned goal. Based on this consideration, Eudragit® Retard RS100 and RL100 resins were selected as positively charged copolymers to prepare polymeric NPs with potential mucoadhesive properties suitable for intranasal application. NPs were produced by the Quasi‐emulsion Solvent Evaporation (QESD) method and loaded with diclofenac acid (DIC) or its epolamine salt (DIEP). Preliminary investigations were performed to obtain the optimized blank formulation and drugs loaded NPs evaluating different parameters that can affect particles size and polydispersity. The optimized formulations unloaded and loaded with DIC and DIEP were further evaluated for their thermotropic behavior by differential scanning calorimetry. Mucoadhesive evaluation was assessed by measuring variation in zeta potential and by turbidimetric assay after incubation of particles with mucin in simulated nasal fluid (SNF) at 37 °C at different time points (0, 1 and 24h) compared to the pure suspensions. Stability of DIC and DIEP loaded NPs was also evaluated in SNF to predict potential aggregation phenomena after nasal administration. Finally, in vivo experiments showed absence of toxicity on the nasal mucosa of mice.

Development of Eudragit® Nanoparticles for Intranasal Drug Delivery: Preliminary Technological and Toxicological Evaluation

Lombardo R.;Bonaccorso A.;Pignatello R.
2022-01-01

Abstract

Intranasal administration has assumed in the last years an increasing value as an alternative strategy for the systemic adsorption of drugs, as an alternative to oral and parenteral routes thanks to the high vascularized nasal mucosa. Nevertheless, different drug features may restrict its absorption through the nasal mucosa with an insufficient diffusion to the systemic circulation. Several technological strategies are under investigation to improve drug absorption during nasal formulation design and production. The use of bioadhesive polymers can be considered a valid approach to pursue the aforementioned goal. Based on this consideration, Eudragit® Retard RS100 and RL100 resins were selected as positively charged copolymers to prepare polymeric NPs with potential mucoadhesive properties suitable for intranasal application. NPs were produced by the Quasi‐emulsion Solvent Evaporation (QESD) method and loaded with diclofenac acid (DIC) or its epolamine salt (DIEP). Preliminary investigations were performed to obtain the optimized blank formulation and drugs loaded NPs evaluating different parameters that can affect particles size and polydispersity. The optimized formulations unloaded and loaded with DIC and DIEP were further evaluated for their thermotropic behavior by differential scanning calorimetry. Mucoadhesive evaluation was assessed by measuring variation in zeta potential and by turbidimetric assay after incubation of particles with mucin in simulated nasal fluid (SNF) at 37 °C at different time points (0, 1 and 24h) compared to the pure suspensions. Stability of DIC and DIEP loaded NPs was also evaluated in SNF to predict potential aggregation phenomena after nasal administration. Finally, in vivo experiments showed absence of toxicity on the nasal mucosa of mice.
2022
Ciliotoxicity
Diclofenac
Diclofenac epolamine
Drug delivery
Mucoadhesion
Nasal mucosa
File in questo prodotto:
File Dimensione Formato  
Corsaro_applsci-2022.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.54 MB
Formato Adobe PDF
1.54 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/525921
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact