Predicting new links in complex networks can have a large societal impact. In fact, many complex systems can be modeled through networks, and the meaning of the links depend on the system itself. For instance, in social networks, where the nodes are users, links represent relationships (such as acquaintance, friendship, etc.), whereas in information spreading networks, nodes are users and content and links represent interactions, diffusion, etc. However, while many approaches involve machine learning-based algorithms, just the most recent ones account for the topology of the network, e.g., geometric deep learning techniques to learn on graphs, and most of them do not account for the temporal dynamics in the network but train on snapshots of the system at a given time. In this paper, we aim to explore Temporal Graph Networks (TGN), a Graph Representation Learning-based approach that natively supports dynamic graphs and assigns to each event (link) a timestamp. In particular, we investigate how the TGN behaves when trained under different temporal granularity or with various event aggregation techniques when learning the inductive and transductive link prediction problem on real social networks such as Twitter, Wikipedia, Yelp, and Reddit. We find that initial setup affects the temporal granularity of the data, but the impact depends on the specific social network. For instance, we note that the train batch size has a strong impact on Twitter, Wikipedia, and Yelp, while it does not matter on Reddit.

Link Prediction in Time Varying Social Networks

Carchiolo V.;Grassia M.;Malgeri M.;Mangioni G.
2022-01-01

Abstract

Predicting new links in complex networks can have a large societal impact. In fact, many complex systems can be modeled through networks, and the meaning of the links depend on the system itself. For instance, in social networks, where the nodes are users, links represent relationships (such as acquaintance, friendship, etc.), whereas in information spreading networks, nodes are users and content and links represent interactions, diffusion, etc. However, while many approaches involve machine learning-based algorithms, just the most recent ones account for the topology of the network, e.g., geometric deep learning techniques to learn on graphs, and most of them do not account for the temporal dynamics in the network but train on snapshots of the system at a given time. In this paper, we aim to explore Temporal Graph Networks (TGN), a Graph Representation Learning-based approach that natively supports dynamic graphs and assigns to each event (link) a timestamp. In particular, we investigate how the TGN behaves when trained under different temporal granularity or with various event aggregation techniques when learning the inductive and transductive link prediction problem on real social networks such as Twitter, Wikipedia, Yelp, and Reddit. We find that initial setup affects the temporal granularity of the data, but the impact depends on the specific social network. For instance, we note that the train batch size has a strong impact on Twitter, Wikipedia, and Yelp, while it does not matter on Reddit.
2022
Deep learning
Geometric deep learning
Information spreading
Link prediction
Social networks
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/526750
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? ND
social impact