We provide methods to construct explicit examples of K3 surfaces. This leads to unirational constructions of Noether–Lefschetz divisors inside the moduli space of K3 surfaces of genus g. We implement Mukai's unirationality construction of the moduli spaces of K3 surfaces of genus g∈{6,…,10,12}, and we also present a new constructive proof of the unirationality of the moduli space of K3 surfaces of genus 11. Furthermore, we show the existence of three unirational hypersurfaces in any moduli space of K3 surfaces of genus g.
Explicit constructions of K3 surfaces and unirational Noether–Lefschetz divisors
Stagliano G.
2022-01-01
Abstract
We provide methods to construct explicit examples of K3 surfaces. This leads to unirational constructions of Noether–Lefschetz divisors inside the moduli space of K3 surfaces of genus g. We implement Mukai's unirationality construction of the moduli spaces of K3 surfaces of genus g∈{6,…,10,12}, and we also present a new constructive proof of the unirationality of the moduli space of K3 surfaces of genus 11. Furthermore, we show the existence of three unirational hypersurfaces in any moduli space of K3 surfaces of genus g.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Explicit_constructions_of_K3_surfaces_and_unirational_Noether–Lefschetz_divisors.pdf
solo gestori archivio
Descrizione: main file
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
480.74 kB
Formato
Adobe PDF
|
480.74 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.