We provide methods to construct explicit examples of K3 surfaces. This leads to unirational constructions of Noether–Lefschetz divisors inside the moduli space of K3 surfaces of genus g. We implement Mukai's unirationality construction of the moduli spaces of K3 surfaces of genus g∈{6,…,10,12}, and we also present a new constructive proof of the unirationality of the moduli space of K3 surfaces of genus 11. Furthermore, we show the existence of three unirational hypersurfaces in any moduli space of K3 surfaces of genus g.

Explicit constructions of K3 surfaces and unirational Noether–Lefschetz divisors

Stagliano G.
2022-01-01

Abstract

We provide methods to construct explicit examples of K3 surfaces. This leads to unirational constructions of Noether–Lefschetz divisors inside the moduli space of K3 surfaces of genus g. We implement Mukai's unirationality construction of the moduli spaces of K3 surfaces of genus g∈{6,…,10,12}, and we also present a new constructive proof of the unirationality of the moduli space of K3 surfaces of genus 11. Furthermore, we show the existence of three unirational hypersurfaces in any moduli space of K3 surfaces of genus g.
2022
Explicit unirational moduli spaces
Gushel–Mukai fourfolds
K3 surfaces
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/538944
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact