Voltage-dependent anion channel (VDAC)1 is the main channel of the mitochondrial outer membrane (MOM) and it has been proposed to be part of the permeability transition pore (PTP), a putative multiprotein complex candidate agent of the mitochondrial permeability transition (MPT). Working at the single live cell level, we found that overexpression of VDAC1 triggers MPT at the mitochondrial inner membrane (MIM). Conversely, silencing VDAC1 expression results in the inhibition of MPT caused by selenite-induced oxidative stress. This MOM-MIM crosstalk was modulated by Cyclosporin A and mitochondrial Cyclophilin D, but not by Bcl-2 and Bcl-X(L), indicative of PTP operation. VDAC1-dependent MPT engages a positive feedback loop involving reactive oxygen species and p38-MAPK, and secondarily triggers a canonical apoptotic response including Bax activation, cytochrome c release and caspase 3 activation. Our data thus support a model of the PTP complex involving VDAC1 at the MOM, and indicate that VDAC1-dependent MPT is an upstream mechanism playing a causal role in oxidative stress-induced apoptosis.

Outer membrane VDAC1 controls permeability transition of the inner mitochondrial membrane in cellulo during stress-induced apoptosis

MESSINA, Angela Anna;REINA S;DE PINTO, Vito Nicola;
2009-01-01

Abstract

Voltage-dependent anion channel (VDAC)1 is the main channel of the mitochondrial outer membrane (MOM) and it has been proposed to be part of the permeability transition pore (PTP), a putative multiprotein complex candidate agent of the mitochondrial permeability transition (MPT). Working at the single live cell level, we found that overexpression of VDAC1 triggers MPT at the mitochondrial inner membrane (MIM). Conversely, silencing VDAC1 expression results in the inhibition of MPT caused by selenite-induced oxidative stress. This MOM-MIM crosstalk was modulated by Cyclosporin A and mitochondrial Cyclophilin D, but not by Bcl-2 and Bcl-X(L), indicative of PTP operation. VDAC1-dependent MPT engages a positive feedback loop involving reactive oxygen species and p38-MAPK, and secondarily triggers a canonical apoptotic response including Bax activation, cytochrome c release and caspase 3 activation. Our data thus support a model of the PTP complex involving VDAC1 at the MOM, and indicate that VDAC1-dependent MPT is an upstream mechanism playing a causal role in oxidative stress-induced apoptosis.
2009
apoptosys; mitochondria; VDAC; mitochondria permeability transition; selenite; oxidative stress
File in questo prodotto:
File Dimensione Formato  
2009.CellResearch19.1363.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 821.22 kB
Formato Adobe PDF
821.22 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/53939
Citazioni
  • ???jsp.display-item.citation.pmc??? 55
  • Scopus 115
  • ???jsp.display-item.citation.isi??? 114
social impact