Implantation of guide cannulas is a widely used technique to access specific brain areas. Although commercially available, the need to personalize these implants and the high cost prompted us to design open-source customized devices taking advantage of 3D printing technology. Our cannulas consisted in a 3D-printed head mount designed according to the Paxinos coordinates to reach the CA1 area of the hippocampus. To cut guide cannulas to the proper length, we designed and realized an original 3D-printed linear motion apparatus. Polylactic acid thermoplastic polymer was used as printing material. Homemade or commercial cannulas were implanted in 4- to 6-month-old wild-type mice and intrahippocampal injections of amyloid-β peptide at different concentrations were performed. In vivo behavioral studies of novel object recognition indicated that results obtained with homemade versus commercial devices were comparable. Methylene blue injections and Nissl staining confirmed the correct localization of cannulas in the CA1 area of mouse hippocampus. Our method allows a fast manufacturing of hippocampal cannulas preserving the required precision at very low cost. Furthermore, this system can be easily modified to produce cannulas to target other brain areas. In conclusion, 3D printing might be used as a useful and versatile technology to realize open-source customized devices in neuroscience laboratories.

Application of 3D Printing Technology to Produce Hippocampal Customized Guide Cannulas

Tropea, Maria Rosaria
Primo
;
Torrisi, Alberto;Vacanti, Valeria;Puzzo, Daniela;Gulisano, Walter
2022-01-01

Abstract

Implantation of guide cannulas is a widely used technique to access specific brain areas. Although commercially available, the need to personalize these implants and the high cost prompted us to design open-source customized devices taking advantage of 3D printing technology. Our cannulas consisted in a 3D-printed head mount designed according to the Paxinos coordinates to reach the CA1 area of the hippocampus. To cut guide cannulas to the proper length, we designed and realized an original 3D-printed linear motion apparatus. Polylactic acid thermoplastic polymer was used as printing material. Homemade or commercial cannulas were implanted in 4- to 6-month-old wild-type mice and intrahippocampal injections of amyloid-β peptide at different concentrations were performed. In vivo behavioral studies of novel object recognition indicated that results obtained with homemade versus commercial devices were comparable. Methylene blue injections and Nissl staining confirmed the correct localization of cannulas in the CA1 area of mouse hippocampus. Our method allows a fast manufacturing of hippocampal cannulas preserving the required precision at very low cost. Furthermore, this system can be easily modified to produce cannulas to target other brain areas. In conclusion, 3D printing might be used as a useful and versatile technology to realize open-source customized devices in neuroscience laboratories.
2022
3D printing
behavioral studies
brain cannulas
hippocampus
neuroscience method
open source apparatus
Animals
Hippocampus
Mice
Peptides
Polymers
Printing, Three-Dimensional
Cannula
Methylene Blue
File in questo prodotto:
File Dimensione Formato  
56_2022_Tropea_Eneuro.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.71 MB
Formato Adobe PDF
3.71 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/541559
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact