If the quaternary quartic equation (Formula Presented) which M. Davis put forward in 1968 has only finitely many solutions in integers, then — it was observed by M. Davis, Yu. V. Matiyasevich, and J. Robinson in 1976 — every listable set would turn out to admit a single-fold Diophantine representation. In 1995, D. Shanks and S. S. Wagstaff conjectured that (*) has infinitely many solutions; while in doubt, it seemed wise to us to single out new candidates for the role of “rule-them-all equation”. We offer three new quaternary quartic equations, each obtained by much the same recipe which led to (*). The significance of those can be supported by arguments analogous to the ones found in Davis’s original paper; moreover, they might play a key role in settling the conjecture that every listable set has a single-fold (or, at least, a finite-fold) representation. Directly from the unproven assertion that any of the novel equations has only finitely many solutions in integers, one can construct a Diophantine relation of exponential growth, as we show in detail for one, namely (Formula Presented), of the new candidate rule-them-all equations. An account of Julia Robinson’s earliest Diophantine reduction of exponentiation to any relation of exponential growth is also included, for the sake of self-containedness.

"One equation to rule them all", revisited

Domenico Cantone;
2021

Abstract

If the quaternary quartic equation (Formula Presented) which M. Davis put forward in 1968 has only finitely many solutions in integers, then — it was observed by M. Davis, Yu. V. Matiyasevich, and J. Robinson in 1976 — every listable set would turn out to admit a single-fold Diophantine representation. In 1995, D. Shanks and S. S. Wagstaff conjectured that (*) has infinitely many solutions; while in doubt, it seemed wise to us to single out new candidates for the role of “rule-them-all equation”. We offer three new quaternary quartic equations, each obtained by much the same recipe which led to (*). The significance of those can be supported by arguments analogous to the ones found in Davis’s original paper; moreover, they might play a key role in settling the conjecture that every listable set has a single-fold (or, at least, a finite-fold) representation. Directly from the unproven assertion that any of the novel equations has only finitely many solutions in integers, one can construct a Diophantine relation of exponential growth, as we show in detail for one, namely (Formula Presented), of the new candidate rule-them-all equations. An account of Julia Robinson’s earliest Diophantine reduction of exponentiation to any relation of exponential growth is also included, for the sake of self-containedness.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/542255
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact