Temporal networks are graphs where each edge is associated with a timestamp denoting when two nodes interact. Temporal Subgraph Isomorphism (TSI) aims at retrieving all the subgraphs of a temporal network (called target) matching a smaller temporal network (called query), such that matched target edges appear in the same chronological order of corresponding query edges. Few algorithms have been proposed to solve the TSI problem (or variants of it) and most of them are applicable only to small or specific queries. In this paper we present TemporalRI, a new subgraph isomorphism algorithm for temporal networks with multiple contacts between nodes, which is inspired by RI algorithm. TemporalRI introduces the notion of temporal flows and uses them to filter the search space of candidate nodes for the matching. Our algorithm can handle queries of any size and any topology. Experiments on real networks of different sizes show that TemporalRI is very efficient compared to the state-of-the-art, especially for large queries and targets.
TemporalRI: subgraph isomorphism in temporal networks with multiple contacts
Giovanni Micale;Giorgio Locicero;Alfredo Pulvirenti;Alfredo Ferro
2021-01-01
Abstract
Temporal networks are graphs where each edge is associated with a timestamp denoting when two nodes interact. Temporal Subgraph Isomorphism (TSI) aims at retrieving all the subgraphs of a temporal network (called target) matching a smaller temporal network (called query), such that matched target edges appear in the same chronological order of corresponding query edges. Few algorithms have been proposed to solve the TSI problem (or variants of it) and most of them are applicable only to small or specific queries. In this paper we present TemporalRI, a new subgraph isomorphism algorithm for temporal networks with multiple contacts between nodes, which is inspired by RI algorithm. TemporalRI introduces the notion of temporal flows and uses them to filter the search space of candidate nodes for the matching. Our algorithm can handle queries of any size and any topology. Experiments on real networks of different sizes show that TemporalRI is very efficient compared to the state-of-the-art, especially for large queries and targets.File | Dimensione | Formato | |
---|---|---|---|
TemporalRI.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
2.91 MB
Formato
Adobe PDF
|
2.91 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.