Background: The last few decades have seen the approval of many new treatment options for Relapsing-Remitting Multiple Sclerosis (RRMS), as well as advances in diagnostic methodology and criteria. These developments have greatly improved the available treatment options for today’s Relapsing-Remitting Multiple Sclerosis patients. This increased availability of disease modifying treatments, however, has implications for clinical trial design in this therapeutic area. The availability of better diagnostics and more treatment options have not only contributed to progressively decreasing relapse rates in clinical trial populations but have also resulted in the evolution of control arms, as it is often no longer sufficient to show improvement from placebo. As a result, not only have clinical trials become longer and more expensive but comparing the results to those of “historical” trials has also become more difficult. Methods: In order to aid design of clinical trials in RRMS, we have developed a simulator called MS TreatSim which can simulate the response of customizable, heterogeneous groups of patients to four common Relapsing-Remitting Multiple Sclerosis treatment options. MS TreatSim combines a mechanistic, agent-based model of the immune-based etiology of RRMS with a simulation framework for the generation and virtual trial simulation of populations of digital patients. Results: In this study, the product was first applied to generate diverse populations of digital patients. Then we applied it to reproduce a phase III trial of natalizumab as published 15 years ago as a use case. Within the limitations of synthetic data availability, the results showed the potential of applying MS TreatSim to recreate the relapse rates of this historical trial of natalizumab. Conclusions: MS TreatSim’s synergistic combination of a mechanistic model with a clinical trial simulation framework is a tool that may advance model-based clinical trial design.

In silico clinical trials for relapsing-remitting multiple sclerosis with MS TreatSim

Pappalardo F.;Russo G.;
2022-01-01

Abstract

Background: The last few decades have seen the approval of many new treatment options for Relapsing-Remitting Multiple Sclerosis (RRMS), as well as advances in diagnostic methodology and criteria. These developments have greatly improved the available treatment options for today’s Relapsing-Remitting Multiple Sclerosis patients. This increased availability of disease modifying treatments, however, has implications for clinical trial design in this therapeutic area. The availability of better diagnostics and more treatment options have not only contributed to progressively decreasing relapse rates in clinical trial populations but have also resulted in the evolution of control arms, as it is often no longer sufficient to show improvement from placebo. As a result, not only have clinical trials become longer and more expensive but comparing the results to those of “historical” trials has also become more difficult. Methods: In order to aid design of clinical trials in RRMS, we have developed a simulator called MS TreatSim which can simulate the response of customizable, heterogeneous groups of patients to four common Relapsing-Remitting Multiple Sclerosis treatment options. MS TreatSim combines a mechanistic, agent-based model of the immune-based etiology of RRMS with a simulation framework for the generation and virtual trial simulation of populations of digital patients. Results: In this study, the product was first applied to generate diverse populations of digital patients. Then we applied it to reproduce a phase III trial of natalizumab as published 15 years ago as a use case. Within the limitations of synthetic data availability, the results showed the potential of applying MS TreatSim to recreate the relapse rates of this historical trial of natalizumab. Conclusions: MS TreatSim’s synergistic combination of a mechanistic model with a clinical trial simulation framework is a tool that may advance model-based clinical trial design.
2022
Computational modeling and simulation
Digital patient
In silico trials
Relapsing-Remitting Multiple Sclerosis
Study design
Humans
Natalizumab
Recurrence
Multiple Sclerosis, Relapsing-Remitting
Multiple Sclerosis
File in questo prodotto:
File Dimensione Formato  
s12911-022-02034-x.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.81 MB
Formato Adobe PDF
1.81 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/542439
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 6
social impact