Background: Decisions in healthcare usually rely on the goodness and completeness of data that could be coupled with heuristics to improve the decision process itself. However, this is often an incomplete process. Structured interviews denominated Delphi surveys investigate experts' opinions and solve by consensus complex matters like those underlying surgical decision-making. Natural Language Processing (NLP) is a field of study that combines computer science, artificial intelligence, and linguistics. NLP can then be used as a valuable help in building a correct context in surgical data, contributing to the amelioration of surgical decision-making. Results: We applied NLP coupled with machine learning approaches to predict the context (words) owning high accuracy from the words nearest to Delphi surveys, used as input. Conclusions: The proposed methodology has increased the usefulness of Delphi surveys favoring the extraction of keywords that can represent a specific clinical context. It permits the characterization of the clinical context suggesting words for the evaluation process of the data.

Evaluation of word embedding models to extract and predict surgical data in breast cancer

Russo G.;Pappalardo F.
2021-01-01

Abstract

Background: Decisions in healthcare usually rely on the goodness and completeness of data that could be coupled with heuristics to improve the decision process itself. However, this is often an incomplete process. Structured interviews denominated Delphi surveys investigate experts' opinions and solve by consensus complex matters like those underlying surgical decision-making. Natural Language Processing (NLP) is a field of study that combines computer science, artificial intelligence, and linguistics. NLP can then be used as a valuable help in building a correct context in surgical data, contributing to the amelioration of surgical decision-making. Results: We applied NLP coupled with machine learning approaches to predict the context (words) owning high accuracy from the words nearest to Delphi surveys, used as input. Conclusions: The proposed methodology has increased the usefulness of Delphi surveys favoring the extraction of keywords that can represent a specific clinical context. It permits the characterization of the clinical context suggesting words for the evaluation process of the data.
2021
Breast cancer
Machine learning
Natural language processing
Word embeddings
Word2Vec
Humans
Female
Natural Language Processing
Machine Learning
Artificial Intelligence
Breast Neoplasms
File in questo prodotto:
File Dimensione Formato  
s12859-022-05038-6.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.34 MB
Formato Adobe PDF
2.34 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/542440
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact