The purpose of this study is to limit the environmental impact of packaging applications by promoting the recycling of waste products and the use of sustainable materials in additive manufacturing technology. To this end, a commercial polylactide acid (PLA)-based filament derived from waste production of bio-bags is herein considered. For reference, a filament using virgin PLA and one using a wood-based biocomposite were characterized as well. Preliminary testing involved infrared spectroscopy, differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The effect of printing parameters (namely bed temperature, layer thickness, top surface layers, retraction speed, and distance) on the final aesthetics of 3D printed parts was verified. The results allow us to attest that the thermal properties of recycled polymer are comparable to those of virgin PLA and biocomposite. In the case of recycled polymer, after the extrusion temperature, bed temperature, and printing speed are estabilished the lowest allowable layer thickness and an appropriate choice of retraction movements are required in order to realize 3D-printed objects without morphological defects visible to the naked eyes. In the case of wood biocomposite, the printing process was complicated by frequent obstructions, and in none of the operating conditions was it possible to obtain an aesthetically satisfying piece of the chosen geometry (Lego-type bricks) Finally, mechanical testing on the 3D printed parts of each system showed that the recycled PLA behaves similarly to virgin and wood/PLA filaments.

Recovery of Waste Material from Biobags: 3D Printing Process and Thermo-Mechanical Characteristics in Comparison to Virgin and Composite Matrices

Patti, Antonella
Primo
;
Acierno, Stefano
Secondo
;
Cicala, Gianluca;Acierno, Domenico
Ultimo
2022-01-01

Abstract

The purpose of this study is to limit the environmental impact of packaging applications by promoting the recycling of waste products and the use of sustainable materials in additive manufacturing technology. To this end, a commercial polylactide acid (PLA)-based filament derived from waste production of bio-bags is herein considered. For reference, a filament using virgin PLA and one using a wood-based biocomposite were characterized as well. Preliminary testing involved infrared spectroscopy, differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The effect of printing parameters (namely bed temperature, layer thickness, top surface layers, retraction speed, and distance) on the final aesthetics of 3D printed parts was verified. The results allow us to attest that the thermal properties of recycled polymer are comparable to those of virgin PLA and biocomposite. In the case of recycled polymer, after the extrusion temperature, bed temperature, and printing speed are estabilished the lowest allowable layer thickness and an appropriate choice of retraction movements are required in order to realize 3D-printed objects without morphological defects visible to the naked eyes. In the case of wood biocomposite, the printing process was complicated by frequent obstructions, and in none of the operating conditions was it possible to obtain an aesthetically satisfying piece of the chosen geometry (Lego-type bricks) Finally, mechanical testing on the 3D printed parts of each system showed that the recycled PLA behaves similarly to virgin and wood/PLA filaments.
2022
film packaging
polylactide acid
printing process
recycling
thermo-mechanical performances
wood biocomposites
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/543141
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact