We prove two Liouville theorems for ancient nonnegative solutions of the heat equation on a complete noncompact Riemannian manifold with Ricci curvature bounded from below by −K, K ≥ 0. If, at any fixed time, such a solution grows subexponentially in space, then it is either constant (when K = 0) or stationary (if K > 0). We also show the optimality of this growth condition through examples.
Liouville theorems for ancient caloric functions via optimal growth conditions
Mosconi S.
Primo
2021-01-01
Abstract
We prove two Liouville theorems for ancient nonnegative solutions of the heat equation on a complete noncompact Riemannian manifold with Ricci curvature bounded from below by −K, K ≥ 0. If, at any fixed time, such a solution grows subexponentially in space, then it is either constant (when K = 0) or stationary (if K > 0). We also show the optimality of this growth condition through examples.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
M-PAMS.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
210.32 kB
Formato
Adobe PDF
|
210.32 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.