Since 2009, 91 new strong-motion stations were built for the renewal of the Swiss Strong Motion Network. Another nine stations will be installed until 2022. For each new station, an extensive site characterization study is performed to model the 1D seismic-velocity profile and, for some sites, the liquefaction potential. Geophysical (passive and active surface-wave methods) and geotechnical cone penetration test (CPT) with additional pore-pressure measurement (CPTu) and seismic CPT (SCPT) methods are used. Analyzing the passive and active recordings with a variety of established and advanced methods, the fundamental frequency of the site, the polarization of the wavefield, the Love- and Rayleigh-wave phase-velocity dispersion curves, and the Rayleigh-wave ellipticity function are retrieved. The liquefaction potential is assessed using CPTu. SCPT measurements are sometimes used to determine the shallow underground structure. The benefits of the combination of different appropriate methods are shown for two examples—the borehole station SBUS in Buochs and the upcoming borehole station SCME in Collombey-Muraz. At both the sites, the CPTu measurements show an elevated liquefaction potential. Combining the passive and active data, the dispersion curves for Love and Rayleigh waves and Rayleigh-wave ellipticity curves are retrieved over a wide-frequency range and inverted for the S-wave velocity profile, in which the shallow part is constrained by the active or SCPT data, the intermediate part by the dispersion curves of the passive methods, and the deepest part by the ellipticity information. For Buochs, the 1D SH-wave amplification functions modeled for the velocity profiles are compared with the empirical amplification for earthquake recordings. Finally, an overview of the site characterization results for 52 of the newly installed seismic stations is given.

Site characterization of swiss strong-motion stations: The benefit of advanced processing algorithms

Panzera Francesco;
2021-01-01

Abstract

Since 2009, 91 new strong-motion stations were built for the renewal of the Swiss Strong Motion Network. Another nine stations will be installed until 2022. For each new station, an extensive site characterization study is performed to model the 1D seismic-velocity profile and, for some sites, the liquefaction potential. Geophysical (passive and active surface-wave methods) and geotechnical cone penetration test (CPT) with additional pore-pressure measurement (CPTu) and seismic CPT (SCPT) methods are used. Analyzing the passive and active recordings with a variety of established and advanced methods, the fundamental frequency of the site, the polarization of the wavefield, the Love- and Rayleigh-wave phase-velocity dispersion curves, and the Rayleigh-wave ellipticity function are retrieved. The liquefaction potential is assessed using CPTu. SCPT measurements are sometimes used to determine the shallow underground structure. The benefits of the combination of different appropriate methods are shown for two examples—the borehole station SBUS in Buochs and the upcoming borehole station SCME in Collombey-Muraz. At both the sites, the CPTu measurements show an elevated liquefaction potential. Combining the passive and active data, the dispersion curves for Love and Rayleigh waves and Rayleigh-wave ellipticity curves are retrieved over a wide-frequency range and inverted for the S-wave velocity profile, in which the shallow part is constrained by the active or SCPT data, the intermediate part by the dispersion curves of the passive methods, and the deepest part by the ellipticity information. For Buochs, the 1D SH-wave amplification functions modeled for the velocity profiles are compared with the empirical amplification for earthquake recordings. Finally, an overview of the site characterization results for 52 of the newly installed seismic stations is given.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/544590
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 21
social impact