Bacterial biofilms are multicellular communities firmly attached to solid extracellular substrates. They are considered the primary cause of huge economic losses, from medicine due to medical implants’ failure to large infrastructure due to enhanced pipe corrosion. Therefore, their eradication is highly desirable. Here, the preparation of ZnO self-propelled micromotors is reported, programming their morphology and motion properties through Ag doping. The ZnO:Ag micromotors actively move upon light irradiation via a self-electrophoretic mechanism, showing excellent light-controlled on/off switching motion. At the same time, the rapid and effective removal of both gram-positive and gram-negative bacteria biofilms from the solid surface is demonstrated, exploiting the well-known antibacterial activity of both Ag and ZnO as well as the enhanced diffusion of the micromotors. The new concept for the low-cost and scalable preparation of chemically programmable Ag-doped ZnO micromotors here illustrated opens a new route toward the formulation of a new class of light-driven semiconducting self-propelled micromotors for environmental applications.

Active Light-Powered Antibiofilm ZnO Micromotors with Chemically Programmable Properties

Mario Urso;
2021-01-01

Abstract

Bacterial biofilms are multicellular communities firmly attached to solid extracellular substrates. They are considered the primary cause of huge economic losses, from medicine due to medical implants’ failure to large infrastructure due to enhanced pipe corrosion. Therefore, their eradication is highly desirable. Here, the preparation of ZnO self-propelled micromotors is reported, programming their morphology and motion properties through Ag doping. The ZnO:Ag micromotors actively move upon light irradiation via a self-electrophoretic mechanism, showing excellent light-controlled on/off switching motion. At the same time, the rapid and effective removal of both gram-positive and gram-negative bacteria biofilms from the solid surface is demonstrated, exploiting the well-known antibacterial activity of both Ag and ZnO as well as the enhanced diffusion of the micromotors. The new concept for the low-cost and scalable preparation of chemically programmable Ag-doped ZnO micromotors here illustrated opens a new route toward the formulation of a new class of light-driven semiconducting self-propelled micromotors for environmental applications.
2021
biofilm eradication
doping
light-powered
robotics
silver
zinc oxide
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/546675
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 49
  • ???jsp.display-item.citation.isi??? 46
social impact