Air quality monitoring is an increasingly debated topic nowadays. The increasing spillage of waste products released into the environment has contributed to the increase in air pollution. Consequently, the production of increasingly performing devices in air monitoring is increasingly in demand. In this scenario, the attention dedicated to workplace safety monitoring has led to the developing and improving of new sensors. Despite technological advancements, sensors based on nanostructured materials are difficult to introduce into the manufacturing flow due to the high costs of the processes and the approaches that are incompatible with the microelectronics industry. The synthesis of a low-cost ultra-thin silicon nanowires (Si NWs)-based sensor is here reported, which allows us the detection of various dangerous gases such as acetone, ethanol, and the ammonia test as a proof of concept in a nitrogen-based mixture. A modified metal-assisted chemical etching (MACE) approach enables to obtain ultra-thin Si NWs by a cost-effective, rapid and industrially compatible process that exhibit an intense light emission at room temperature. All these gases are common substances that we find not only in research or industrial laboratories, but also in our daily life and can pose a serious danger to health, even at small concentrations of a few ppm. The exploitation of the Si NWs optical and electrical properties for the detection of low concentrations of these gases through their photoluminescence and resistance changes will be shown in a nitrogen-based gas mixture. These sensing platforms give fast and reversible responses with both optical and electrical transductions. These high performances and the scalable synthesis of Si NWs could pave the way for market-competitive sensors for ambient air quality monitoring.

Luminescent Silicon Nanowires as Novel Sensor for Environmental Air Quality Control

Morganti, Dario;Faro, Maria José Lo;Leonardi, Antonio Alessio
;
Conoci, Sabrina;Irrera, Alessia
2022-01-01

Abstract

Air quality monitoring is an increasingly debated topic nowadays. The increasing spillage of waste products released into the environment has contributed to the increase in air pollution. Consequently, the production of increasingly performing devices in air monitoring is increasingly in demand. In this scenario, the attention dedicated to workplace safety monitoring has led to the developing and improving of new sensors. Despite technological advancements, sensors based on nanostructured materials are difficult to introduce into the manufacturing flow due to the high costs of the processes and the approaches that are incompatible with the microelectronics industry. The synthesis of a low-cost ultra-thin silicon nanowires (Si NWs)-based sensor is here reported, which allows us the detection of various dangerous gases such as acetone, ethanol, and the ammonia test as a proof of concept in a nitrogen-based mixture. A modified metal-assisted chemical etching (MACE) approach enables to obtain ultra-thin Si NWs by a cost-effective, rapid and industrially compatible process that exhibit an intense light emission at room temperature. All these gases are common substances that we find not only in research or industrial laboratories, but also in our daily life and can pose a serious danger to health, even at small concentrations of a few ppm. The exploitation of the Si NWs optical and electrical properties for the detection of low concentrations of these gases through their photoluminescence and resistance changes will be shown in a nitrogen-based gas mixture. These sensing platforms give fast and reversible responses with both optical and electrical transductions. These high performances and the scalable synthesis of Si NWs could pave the way for market-competitive sensors for ambient air quality monitoring.
2022
electrical detection
gas sensing
optical detection
photoluminescence
silicon nanowires
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/548626
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact