Transition metal oxide nanostructures are promising materials for energy storage devices, exploiting electrochemical reactions at nanometer solid-liquid interface. Herein, WO3 nanorods and hierarchical urchin-like nanostructures were obtained by hydrothermal method and calcination processes. The morphology and crystal phase of WO3 nanostructures were investigated by scanning and transmission electron microscopy (SEM and TEM) and X-ray diffraction (XRD), while energy storage performances of WO3 nanostructures-based electrodes were evaluated by cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) tests. Promising values of specific capacitance (632 F/g at 5 mV/s and 466 F/g at 0.5 A/g) are obtained when pure hexagonal crystal phase WO3 hierarchical urchin-like nanostructures are used. A detailed modeling is given of surface and diffusion-controlled mechanisms in the energy storage process. An asymmetric supercapacitor has also been realized by using WO3 urchin-like nanostructures and a graphene paper electrode, revealing the highest energy density (90 W × h/kg) at a power density of 90 W × kg-1 and the highest power density (9000 W/kg) at an energy density of 18 W × h/kg. The presented correlation among physical features and electrochemical performances of WO3 nanostructures provides a solid base for further developing energy storage devices based on transition metal oxides.

Engineering of Nanostructured WO3 Powders for Asymmetric Supercapacitors

Mineo, Giacometta;Mirabella, Salvo;Bruno, Elena
2022-01-01

Abstract

Transition metal oxide nanostructures are promising materials for energy storage devices, exploiting electrochemical reactions at nanometer solid-liquid interface. Herein, WO3 nanorods and hierarchical urchin-like nanostructures were obtained by hydrothermal method and calcination processes. The morphology and crystal phase of WO3 nanostructures were investigated by scanning and transmission electron microscopy (SEM and TEM) and X-ray diffraction (XRD), while energy storage performances of WO3 nanostructures-based electrodes were evaluated by cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) tests. Promising values of specific capacitance (632 F/g at 5 mV/s and 466 F/g at 0.5 A/g) are obtained when pure hexagonal crystal phase WO3 hierarchical urchin-like nanostructures are used. A detailed modeling is given of surface and diffusion-controlled mechanisms in the energy storage process. An asymmetric supercapacitor has also been realized by using WO3 urchin-like nanostructures and a graphene paper electrode, revealing the highest energy density (90 W × h/kg) at a power density of 90 W × kg-1 and the highest power density (9000 W/kg) at an energy density of 18 W × h/kg. The presented correlation among physical features and electrochemical performances of WO3 nanostructures provides a solid base for further developing energy storage devices based on transition metal oxides.
2022
asymmetric supercapacitors
electrochemistry
energy storage
nanostructures
tungsten trioxide
File in questo prodotto:
File Dimensione Formato  
209_MineoNM_WO3 supercapacitor.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.71 MB
Formato Adobe PDF
2.71 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/548983
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact