The three-flavor crystalline color-superconducting (CCS) phase of quantum chromodynamics (QCD) is a candidate phase for the ground state of cold matter at moderate densities above the density of the deconfinement phase transition. Apart from being a superfluid, the CCS phase has properties of a solid, such as a lattice structure and a shear modulus, and hence the ability to sustain multipolar deformations in gravitational equilibrium. We construct equilibrium configurations of hybrid stars composed of nuclear matter at low, and CCS quark matter at high, densities. Phase equilibrium between these phases is possible only for rather stiff equations of state of nuclear matter and large couplings in the effective Nambu-Jona-Lasinio Lagrangian describing the CCS state. We identify a new branch of stable CCS hybrid stars within a broad range of central densities which, depending on the details of the equations of state, either bifurcate from the nuclear sequence of stars when the central density exceeds that of the deconfinement phase transition or form a new family of configurations separated from the purely nuclear sequence by an instability region. The maximum masses of our nonrotating hybrid configurations are consistent with the presently available astronomical bounds. The sequences of hybrid configurations that rotate near the mass-shedding limit are found to be more compact and thus support substantially larger spins than their same mass nuclear counterparts.
Equilibrium sequences of non rotating and rapidly rotating crystalline color superconducting hybrid stars
Marco Ruggieri;Dirk Rischke;
2007-01-01
Abstract
The three-flavor crystalline color-superconducting (CCS) phase of quantum chromodynamics (QCD) is a candidate phase for the ground state of cold matter at moderate densities above the density of the deconfinement phase transition. Apart from being a superfluid, the CCS phase has properties of a solid, such as a lattice structure and a shear modulus, and hence the ability to sustain multipolar deformations in gravitational equilibrium. We construct equilibrium configurations of hybrid stars composed of nuclear matter at low, and CCS quark matter at high, densities. Phase equilibrium between these phases is possible only for rather stiff equations of state of nuclear matter and large couplings in the effective Nambu-Jona-Lasinio Lagrangian describing the CCS state. We identify a new branch of stable CCS hybrid stars within a broad range of central densities which, depending on the details of the equations of state, either bifurcate from the nuclear sequence of stars when the central density exceeds that of the deconfinement phase transition or form a new family of configurations separated from the purely nuclear sequence by an instability region. The maximum masses of our nonrotating hybrid configurations are consistent with the presently available astronomical bounds. The sequences of hybrid configurations that rotate near the mass-shedding limit are found to be more compact and thus support substantially larger spins than their same mass nuclear counterparts.| File | Dimensione | Formato | |
|---|---|---|---|
| 
									
										
										
										
										
											
												
												
												    
												
											
										
									
									
										
										
											0710.3874.pdf
										
																				
									
										
											 solo gestori archivio 
											Tipologia:
											Documento in Pre-print
										 
									
									
									
									
										
											Licenza:
											
											
												NON PUBBLICO - Accesso privato/ristretto
												
												
												
											
										 
									
									
										Dimensione
										226.67 kB
									 
									
										Formato
										Adobe PDF
									 
										
										
								 | 
								226.67 kB | Adobe PDF | Visualizza/Apri | 
| 
									
										
										
										
										
											
												
												
												    
												
											
										
									
									
										
										
											PhysRevD.77.023004.pdf
										
																				
									
										
											 solo gestori archivio 
											Tipologia:
											Versione Editoriale (PDF)
										 
									
									
									
									
										
											Licenza:
											
											
												NON PUBBLICO - Accesso privato/ristretto
												
												
												
											
										 
									
									
										Dimensione
										317.72 kB
									 
									
										Formato
										Adobe PDF
									 
										
										
								 | 
								317.72 kB | Adobe PDF | Visualizza/Apri | 
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


